
Fortify SAST 23.1

10 May 2023 Frans van Buul, Sr Prod Manager Fortify SAST|

Technical Awareness Webinar

OpenText ©2023 All rights reserved 22

Agenda

General notes

- The official language count

- Relevant releases

- Installer split

- Looking ahead: Fortify-on-Solaris end-of-life.

Version upgrades

- Languages

- Build tools

- Side note: working with unsupported Gradle versions

New features / additional coverage

- .NET on Linux

- Dart/Flutter

- Python improvements

- Scan Policy

- Rule Properties

- 2023.R1 rule pack highlights.

General notes

OpenText ©2023 All rights reserved 44

Fortify SAST supports

31+

languages as of version 23.1

OpenText ©2023 All rights reserved 55

Language count

1 C#

2 VB.NET

3 TypeScript

4 JavaScript

5 Java

6 Kotlin

7 Scala

8 COBOL

9 Swift

10 Objective-C

11 Objective-C++

12 C

13 C++

14 Python

15 PHP

16 Go

17 Salesforce Apex

18 Ruby

19 ABAP

20 PL/SQL

21 T-SQL

22 ColdFusion

23 ActionScript

24 Visual Basic

25 VBScript

26 HTML

27 XML

28 JSON

29 YAML

30 HCL (new as of 22.1)

31 Dart/Flutter (new as of 23.1)

Roadmap/expectations beyond 23.1 (the

standard disclaimers apply):

32 Bicep (23.2)

33 Solidity (23.2)

34 PL/pgSQL (2024)

35 MySQL Stored Proc Language (2024)

36 Powershell (2024)

37 Bash (2024/2025)

38 Rust

39 Groovy

The “+” refers to template-like-languages like JSP, Razor, Handlebars, etc.

OpenText ©2023 All rights reserved 66

Relevant releases

Fortify SCA 23.1.0 (18 May 2023)

Note: this will include Xcode 14.3. We have no patch 23.1.1 currently in sight.

Security Content 2023 Update 1 (31 March 2023)

Security Content 2023 Update 2 (expected 30 June 2023)

OpenText ©2023 All rights reserved 77

Installer split

As of 23.1, the former installer “SCA and Apps” has been split into

- SCA 23.1: sourceanalyzer and a handful of tools useful in non-end-user environments, including fortifyupdate,

packagescanner, pwdtool, scancentral, SCAState

- Apps and Tools 23.1: auditworkbench, (BIRT)ReportGenerator, CustomRulesEditor, ScanWizard, fortifyclient

- FPRUtility and iidmigrator are present in both

Rationale:

- Smaller footprint in non-interactive environments like Docker containers acting as ScanCentral sensors; also,

smaller footprint for auditors who use tools but don’t scan themselves.

- Easier, and in the future, decoupled, releases.

Covered during 9 May SSC & Tools TAW by Young Park; also, Anna Karyakina has demoed this feature on 9 May

demo day (recorded).

OpenText ©2023 All rights reserved 88

Heads-up: Solaris support likely to be removed 23.2

Facts:

1. SCA is a Java-based application. We need to run on an LTS version of Java, currently, Java 11. The next LTS available is
Java 17.

2. Customers increasingly run composition analysis on Fortify itself, and there's big pressure to update vulnerable
components.

3. For one important component (Spring), the newer versions require Java 17. The end of security patches for Java 11-
compatible versions is approaching. If we're still on Java 11 at that point, we'll get stuck with non-fixable vulnerable
components.

4. Oracle has stopped creating Java versions for Solaris as of Java 15 (https://openjdk.org/jeps/381).

We are forced to drop Solaris support soon. If you have customer for

whom that is an issue, please contact me directly to discuss strategy.

https://openjdk.org/jeps/381

Version upgrades

OpenText ©2023 All rights reserved 1010

Language version upgrades

Language 22.2 23.1 Notes

.NET 5–6 5–7

C# 5–10 5–11

Apex 55 55–57 By design, newer (not-yet-released) versions like 58/Summer ‘23 will work as well.

Go 1.12-1.17 1.12–1.19 Go 1.20 (released 1 Feb) practically works as well due to limited changes.

Go generics (new in 1.18) are not fully analyzed.

JavaScript 2015–2021 2015–2022

Kotlin 1.3–1.6 1.3–1.7 Kotlin 1.8 (released 28 Dec) practically works as well due to limited changes.

PHP 7.3–7.4, 8.0–8.1 7.3–7.4, 8.0–8.2

Python 2.6–2.7, 3.0–3.9 2.6–2.7, 3.0–3.11 Not just a version bump; also a new and improved translator.

TypeScript 2.8, 3.x, 4.0–4.5 2.8, 3.x, 4.x This means 4 new minor versions (4.6–4.9). Since the next one will be 5.0, we’re now listing as

4.x.

Angular 2–13 2–15 This is in-between a language (for which we mention versions) and a framework (for which we

don’t mention versions).

Post-23.1 release, we’ll redesign the way we communicate about

supported languages, so facts like these find their way into the

official docs.

OpenText ©2023 All rights reserved 1111

Build tool/compiler version upgrades

Language 22.2 23.1 Notes

Gradle 5.0–7.4.x 5.0–7.4.x, 8.0.x 7.6 and 8.1 are not yet supported.

Our support is for the Groovy DSL, not the Kotlin DSL. Android Studio Giraffe (beta as of 20

April) defaults to the Kotlin DSL for new projects, which is likely to trigger some customer tickets

at some point. Roadmap for 23.2 to fix this.

Unsupported usually means hard fail for Gradle.

You can work around unsupported Gradle versions – more on that next slide.

Maven 3.0.x, 3.5.x, 3.6.x, 3.8.x 3.0.x, 3.5.x, 3.6.x, 3.8.x,

3.9.x

Newer versions usually don’t break this integration; e.g., 22.2 works fine with 3.9.x.

MSBuild 14.0, 15.x, 16.x, 17.0–

17.2

14.0, 15.x, 16.x, 17.0–

17.5

Xcode 13–14.2 13–14.3 See sysreq guide for the exact list of individual versions.

14.1 support was introduced in patch 22.2.1. This also turned out to work for 14.2; no separate

patch was needed.

gcc/g++

(on any OS)

4.9, 5.x 4.9, 5.x This is about AIX and Solaris.

gcc/g++

(on Win/Lin/Mac)

4.9, 5.x, 6.x–10.4 4.9, 5.x, 6.x–10.4, 11 Originally, the 22.2 docs specifically listed 10.2.1, excluding 6.x–9.x and other 10.x.

OpenText ©2023 All rights reserved 1212

Working with unsupported Gradle versions

When the Gradle integration doesn’t work, you can manually add some build script code to the top-

level build.gradle file, e.g.,

Note: this works, but it’s not

completely generic; you will need to

tweak this to the specific case.

New features

OpenText ©2023 All rights reserved 1414

.NET on Linux

Let’s quickly recap .NET history:

.NET 5 .NET 6 .NET 7
.NET Core

2.0

.NET Core

2.1, 2.2

.NET Core

3.0, 3.1

202220212020201920182017

.NET Core

1.0, 1.1

2016

.NET

Framework

4.7, 4.7.1

.NET

Framework

4.8

.NET

Framework

4.8.1

2002

.NET

Framework

1.0

.NET

Framework

4.7.2

This is where the new .NET Core

technology became the standard

and .NET Framework got in

maintenance mode.

OpenText ©2023 All rights reserved 1515

.NET, platform dependence, and Fortify

.NET Framework was platform-independent in theory from the beginning.

The “Mono” project provided an open-source .NET Framework implementation that runs on Linux. This

is not popular among our customers.

.NET Core / .NET has been implemented to be truly platform-independent. We have many customers

using this on Linux.

Fortify has historically only supported .NET translation on Windows. As of 23.1, we also support this on

Linux. The following conditions apply:

- This requires an installation of .NET 6.

- It (officially) applies to .NET 6 and newer only. It certainly won’t work with .NET Framework.

- While we support Linux, we don’t support Mac.

OpenText ©2023 All rights reserved 1616

.NET, build tools, and Fortify

For many languages, Fortify build-tool integration is an option. For .NET, it’s mandatory.

Historically, the build tool for .NET Framework was “msbuild”. This is only officially available on

Windows.

For .NET Core / .NET, there’s another build tool called “dotnet”, available everywhere.

Until 23.1, Fortify only support .NET translation through “msbuild”. That would not allow us to

implement Linux support. So, 23.1 supports the “dotnet” command as well.

OpenText ©2023 All rights reserved 1717

.NET on Linux

Live demo

OpenText ©2023 All rights reserved 1818

Dart

Dart/Flutter

Dart is a language; files are by convention

named *.dart.

We support versions 2.12–2.18. (2.x pre 2.12 may work.

1.x will not work.)

Most important use case is cross-platform

mobile client development. This is the use

case Fortify focuses on.

Can also be used for web client development,

desktop apps, server apps.

Flutter

Flutter is a framework for mobile/web/desktop

development.

We support versions 2.0-3.3.

It is built on top of the Dart language and

imported as a dependency in a Dart app.

There are no “flutter files”.

OpenText ©2023 All rights reserved 1919

Dart/Flutter

It is impossible to have a Flutter application that isn’t a Dart application.

It is theoretically possible to have a Dart application that isn’t a Flutter application, but that’s theory

only.

Logically, we should be talking about Dart as a language and Flutter as a framework.

Many customers will simply ask for “Flutter” support.

→ For all these reasons, we talk about “Dart/Flutter” in many places and have listed Flutter in the

language tables of the sysreq document.

OpenText ©2023 All rights reserved 2020

Dart/Flutter - limitations

The Dart/Flutter rule content will go out in R2 (30 June). Until that time, this feature isn’t usable by

customers.

There are certain language constructs not yet fully taken into account by the translator, and this will be

further developed in 23.2.

- This does not affect the ability to run a translation.

- It will, of course, lead to false negatives in certain situations.

- We are calling out Dart/Flutter in 23.1 as “supported” and not as “preview”, “beta” or anything. SAST support in never complete.

Fortify support for Dart/Flutter is for Windows and Linux. MacOS is not supported.

OpenText ©2023 All rights reserved 2121

Dart/Flutter – practical notes

Dart translation works directly:

- sourceanalyzer –b <buildid> <other options> <directory or file to

translate>

(Detail: files translated are currently not being sent to STDOUT, even when –verbose)

Dart/Flutter dependencies must be present prior to translation, by invoking

- flutter pub get (for Flutter apps)

- dart pub get (for the Dart-but-not-Flutter app)

If there are nested packages with their own pubspec.yaml files, this should be done in those directories as well.

OpenText ©2023 All rights reserved 2222

Dart/Flutter

Live demo

OpenText ©2023 All rights reserved 2323

Python Improvements

New translator with drastically lower error/warning counts, examples from test bed:

Constructs are now understood that weren’t understood before.

OpenText ©2023 All rights reserved 2424

Python Improvements

Live demo

OpenText ©2023 All rights reserved 2525

Scan Policy

This is the feature originally slated as “Noise Reduction Level”; changed this to “Scan Policy” for better

perception.

It is designed to give users an options to configure Fortify to provide more relevant results. Compared

to many other features we have for that,

- this is very easy to use;

- it suppresses results in an early stage; they don’t even occur in the FPR.

It is based on an existing (but not well-known) feature called “filter files”. We’ll review this first.

OpenText ©2023 All rights reserved 2626

Filter Files pre-23.1

Filter Files are text files, with Unix-style ‘#’ comments allowed.

They can be used to filter out a specific

- vulnerability instance (by instance ID)

- rule (by rule ID; can also be done using a SuppressionRule custom rule)

- category or category/subcategory (by name)

They are specified during scan/analysis time (not during translation).

They are specified by the “-filter” argument. This points to the relative or absolute path of the filter.

Multiple filter files may be provided.

They operate

- before rendering (so filtered out results do not appear in the FPR),

- but after the analysis itself (so filters do not improve performance except for the rendering phase)

OpenText ©2023 All rights reserved 2727

Scan Policy in 23.1

The Filter Files mechanism has been extended to support filtering based on numerical properties of

results, e.g.:

Impact <= 1.5

Likelihood <= 1.5

In addition to the -filter flag, there now is a -scan-policy (or shorthand: -sc) flag.This looks for

scan policy/filter files under Core/config/scales.

E.g., -scan-policy security will apply filter Core/config/scales/scan-policy-security.txt

Users can put their own files there and they will migrate when upgrading SCA.

OpenText ©2023 All rights reserved 2828

Out-of-the-box scan policies 23.1

Classic

This is the default scan

policy.

It is a file with just some

comments.

23.1 behaves, by default, like

22.2.

Security

Filters out 39 categories that

are quality related.

That doesn’t mean that these never can lead to

a security issue, however

- Usually they don’t

- These things tend to be picked up by other

tools in the pipeline.

Devops

Filters out everything that

“Security” filters out.

Filters out 7 more categories

that are often considered

noise
Insecure Randomness, Weak XML Schema, Log

Forging, Mass Assignment, Access Control:

Database, Build Misconfiguration, Often Misused

Filters out issues with

Impact <= 1.5 or

Likelihood <=1.5

OpenText ©2023 All rights reserved 2929

Scan Policy

Live demo

OpenText ©2023 All rights reserved 3030

2023.R1 rules with SCA 23.1: Rule Properties

Some rules now can be configured through properties.

Standard config file for those is “fortify-rules.properties”. Appendix B of the user guide has the details.

Primary use case is to override default regexes for passwords/keys:

Note: this applies to identification of passwords and keys through structural rules, catching cases such as
const myKey = “xyz”. It has nothing to do with our regex analyzer.

Note: Peter Blay did an extensive demo of this during 9 May demo day (recorded)

OpenText ©2023 All rights reserved 3131

2023.R1 rule pack: other highlights

Many, many language updates. To truly support a new version of something, we need SCA and rule support. R1 contained updates for

- Go 1.17, Python 3.10, ECMAScript 2022, iOS SDK 16, Salesforce Apex 57, .NET 7

In addition, there are several new things

- Vue 2

- Google Dataflow / Java Apache Beam

As well as huge category expansions in IaC

- AWS Terraform

- Azure Terraform

- Azure ARM

Be sure to check out the release notes: https://community.microfocus.com/cyberres/fortify/w/fortify-product-

announcements/44775/opentext-fortify-software-security-content-2023-update-1

https://community.microfocus.com/cyberres/fortify/w/fortify-product-announcements/44775/opentext-fortify-software-security-content-2023-update-1
https://community.microfocus.com/cyberres/fortify/w/fortify-product-announcements/44775/opentext-fortify-software-security-content-2023-update-1

OpenText ©2023 All rights reserved 3232

Great Code Demands

Great Security

	Slide 1
	Slide 2: Agenda
	Slide 3
	Slide 4
	Slide 5: Language count
	Slide 6: Relevant releases
	Slide 7: Installer split
	Slide 8: Heads-up: Solaris support likely to be removed 23.2
	Slide 9
	Slide 10: Language version upgrades
	Slide 11: Build tool/compiler version upgrades
	Slide 12: Working with unsupported Gradle versions
	Slide 13
	Slide 14: .NET on Linux
	Slide 15: .NET, platform dependence, and Fortify
	Slide 16: .NET, build tools, and Fortify
	Slide 17: .NET on Linux
	Slide 18: Dart/Flutter
	Slide 19: Dart/Flutter
	Slide 20: Dart/Flutter - limitations
	Slide 21: Dart/Flutter – practical notes
	Slide 22: Dart/Flutter
	Slide 23: Python Improvements
	Slide 24: Python Improvements
	Slide 25: Scan Policy
	Slide 26: Filter Files pre-23.1
	Slide 27: Scan Policy in 23.1
	Slide 28: Out-of-the-box scan policies 23.1
	Slide 29: Scan Policy
	Slide 30: 2023.R1 rules with SCA 23.1: Rule Properties
	Slide 31: 2023.R1 rule pack: other highlights
	Slide 32: Great Code Demands Great Security

