
Micro Focus
Fortify Static Code Analyzer
Software Version: 23.1.0

Custom Rules Guide

Document Release Date: May 2023

Software Release Date: May 2023

Legal Notices
Open Text Corporation

275 Frank Tompa Drive, Waterloo, Ontario, Canada, N2L 0A1

Copyright Notice
Copyright 2003 - 2023 Open Text.

The only warranties for products and services of Open Text and its affiliates and licensors (“Open Text”) are as may be set forth
in the express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. Open Text shall not be liable for technical or editorial errors or omissions contained herein.
The information contained herein is subject to change without notice.

Trademark Notices
“OpenText” and other Open Text trademarks and service marks are the property of Open Text or its affiliates. All other
trademarks or service marks are the property of their respective owners.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number

l Document Release Date, which changes each time the document is updated

l Software Release Date, which indicates the release date of this version of the software

This document was produced on April 13, 2023. To check for recent updates or to verify that you are using the most recent
edition of a document, go to:

https://www.microfocus.com/support/documentation

Custom Rules Guide

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 2 of 157

https://www.microfocus.com/support/documentation

Contents

Preface 8

Contacting Micro Focus Fortify Customer Support 8

For More Information 8

About the Documentation Set 8

Fortify Product Feature Videos 8

Change Log 9

Chapter 1: Introduction 10

Intended Audience 10

Document Structure 10

Additional Custom Rules Documentation and Sample Application 11

Related Documents 11

All Products 12

Fortify Static Code Analyzer 13

Chapter 2: Custom Rules Overview 14

Fortify Secure Coding Rulepacks 14

Custom Rules 14

Custom Rules and User Roles 15

Individual Auditor 15

Central Security Team 15

Development Team 16

Rulepacks and Common Rule XML Elements 16

RulePack Element 17

Rules Element 18

Common Rule Elements 20

FunctionIdentifier Element 21

Parameters Element 24

Modifiers Element 25

Conditional Elements 26

Custom Rules Guide

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 3 of 157

Custom Descriptions 28

Adding Custom Descriptions to Fortify Rules 28

Identify Rules to Modify 30

Adding Fortify Descriptions to Custom Rules 30

Chapter 3: Structural Analyzer Rules 32

Structural Analyzer and Custom Rules 32

Structural Tree 32

Structural Tree Query Language 33

Structural Tree Examples 33

XML Representation of Structural Analyzer Rules 38

Custom Structural Rule Scenarios 38

Leftover Debug 39

Dangerous Function Calls 40

Overly Broad Catch Blocks 42

Password in Comments 45

Poor Logging Practice 46

Empty Catch Block 47

Chapter 4: Dataflow Analyzer Rules 49

Dataflow Analyzer and Custom Rules 49

Dataflow Analyzer and Custom Rules Concepts 50

Taint Source 51

Taint Write 51

Taint Entrypoint 51

Taint Sink 52

Taint Passthrough / Transfer 52

Taint Cleanse 52

Taint Flags 53

Taint Flag Types 53

Taint Flag Behavior 54

Taint Path 54

Validation Constructs 54

Types of Dataflow Analyzer Rules 55

XML Representation of Dataflow Analyzer Rules 55

Source Rules 57

Sink Rules 60

Custom Rules Guide

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 4 of 157

Passthrough Rules 62

Entrypoint Rules 64

Cleanse Rules 65

Custom Dataflow Analyzer Rule Scenarios 67

SQL Injection and Access Control 67

Persistent Cross-Site Scripting 72

Path Manipulation 78

Command Injection 81

Validation Construct Examples 85

Chapter 5: Control Flow Analyzer Rules 91

Control Flow Analyzer and Custom Rules 91

Control Flow Analyzer and Custom Rule Concepts 93

Rule Pattern 93

Rule Variable 93

Rule Binding 93

XML Representation of Control Flow Analyzer Rules 94

Custom Control Flow Rule Scenarios 96

Resource Leak 97

Null Pointer Check 103

Chapter 6: Content and Configuration Analyzer Rules 107

Content Analyzer and Custom Rules 107

XML Representation of Content Analyzer Rules 107

Configuration Analyzer and Custom Rules 108

XML Representation of Configuration Analyzer Rules 108

Configuration Rules 108

Regular Expression Rules 111

Custom Configuration Rule Scenarios 112

Property File 112

Tomcat File 114

Authentication Tokens in Files 115

Chapter 7: Manipulation Rules 117

Suppression Rules 117

Custom Rules Guide

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 5 of 157

XML Representation of Suppression Rules 119

Alias Rules 119

XML Representation of Alias Rules 120

Result Filter Rules 120

XML Representation of Result Filter Rules 121

Chapter 8: Custom Vulnerability Category Mapping 124

Mapping Fortify Categories to Alternative External Categories 124

External Metadata XML Structure 125

ExternalMetadataPack Element 125

PackInfo Element 127

ExternalList Element 128

ExternalListExtension Element 129

ExternalCategoryDefinition Element 130

Mapping Element 131

XML Skeleton 131

Example Mappings 132

Appendix A: Taint Flag Reference 134

General Taint Flags 134

Specific Taint Flags 136

Neutral Taint Flags 139

Appendix B: Structural Rules Language Reference 143

Structural Syntax and Grammar 143

Types 144

Properties 145

Reference Resolution 146

Null Resolutions 146

Relations 147

Results Reporting 148

Call Graph Reachability 149

Appendix C: Control Flow Rule Reference 151

Custom Rules Guide

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 6 of 157

Syntax and Grammar 151

Control Flow Rules 152

Control Flow Rule Identifiers 152

Control Flow Rule Format 152

Declarations 153

Transitions 153

Function Calls 156

Send Documentation Feedback 157

Custom Rules Guide

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 7 of 157

Preface

Contacting Micro Focus Fortify Customer Support
Visit the Support website to:

l Manage licenses and entitlements
l Create and manage technical assistance requests
l Browse documentation and knowledge articles
l Download software
l Explore the Community

https://www.microfocus.com/support

For More Information
For more information about Fortify software products:

https://www.microfocus.com/cyberres/application-security

About the Documentation Set
The Fortify Software documentation set contains installation, user, and deployment guides for all
Fortify Software products and components. In addition, you will find technical notes and release notes
that describe new features, known issues, and last-minute updates. You can access the latest versions
of these documents from the following Micro Focus Product Documentation website:

https://www.microfocus.com/support/documentation

To be notified of documentation updates between releases, subscribe to Fortify Product
Announcements on the Micro Focus Community:

https://community.microfocus.com/cyberres/fortify/w/fortify-product-announcements

Fortify Product Feature Videos
You can find videos that highlight Fortify products and features on the Fortify Unplugged YouTube
channel:

https://www.youtube.com/c/FortifyUnplugged

Custom Rules Guide
Preface

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 8 of 157

https://www.microfocus.com/support
https://www.microfocus.com/cyberres/application-security
https://www.microfocus.com/support/documentation
https://community.microfocus.com/cyberres/fortify/w/fortify-product-announcements
https://www.youtube.com/c/FortifyUnplugged

Change Log
The following table lists changes made to this document. Revisions to this document are published
between software releases only if the changes made affect product functionality.

Software Release /
Document Version Change

23.1.0 Updated: Release date and version

22.2.0 Updated:

l Added new modifier suspend for use with Kotlin only (see "Modifiers
Element" on page 25)

22.1.0 Updated:

l Clarified how the language attribute can apply to multiple
programming languages (see "Rules Element" on page 18)

l Added a new rule type: RegexRule (see "Configuration Analyzer and
Custom Rules" on page 108)

21.2.0 Updated: Release date and version

Custom Rules Guide
Change Log

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 9 of 157

Chapter 1: Introduction
Fortify Static Code Analyzer provides a set of analyzers that detect potential security vulnerabilities in
source code. It is important, when you analyze a project, that the Fortify Static Code Analyzer
translation phase completes without errors and that all relevant source code is included to ensure that
the necessary artifacts are part of the scanned model. After the source code is translated, the Fortify
Static Code Analyzer analyzers can use both Fortify Secure Coding Rulepacks and customer-specific
security rules (custom rules) to identify vulnerabilities.

This document provides the information that you need to create custom rules for Fortify Static Code
Analyzer. This includes both conceptual content that focuses on customizing topics and several
examples that apply rule-writing concepts to real-world problems.

Intended Audience
This document is intended for people who are experienced with both security and programming.
Some content in this guide might be difficult to understand without programming experience.

Document Structure
The following chapters describe how Fortify Static Code Analyzer works with specific analyzers to
discover vulnerabilities in code and how to write custom rules to influence the results produced:

l "Custom Rules Overview" on page 14—Describes Fortify Secure Coding Rulepacks, custom rules,
and introduces the XML representation for rules

l "Structural Analyzer Rules" on page 32—Describes how to write custom rules to detect issues by
identifying certain patterns of code

l "Dataflow Analyzer Rules" on page 49—Describes how to write custom rules to detect security
issues that involve tainted data (user-controlled input) that is put to potentially dangerous use

l "Control Flow Analyzer Rules" on page 91—Describes how to write custom rules to detect issues in
programs that have insecure sequences of operations

l "Content and Configuration Analyzer Rules" on page 107—Describes how to write custom rules to
detect issues in HTML content and application configuration files

l Custom Rule Scenarios—The specific analyzer chapters include scenarios for the sample
application called Riches Wealth Online (RWO). This application enables users to perform the
following online banking operations: transfer money, view account statements, and receive
messages. The RWO application demonstrates the diverse range of application security
vulnerabilities that are typically encountered in real-world applications that provide functionality
similar to RWO. The application is built with JavaScript, Struts 2, Hibernate 2, and Java Enterprise
Edition.

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 10 of 157

Each scenario highlights specific vulnerabilities in RWO and demonstrates how to identify them
using custom rules. Each scenario shows how an attacker can exploit vulnerabilities in RWO source
code. The scenario, where applicable, highlights how Fortify Static Code Analyzer and the Secure
Coding Rulepacks detect the vulnerability. The scenario then explains the type of custom rules
necessary to detect the vulnerability and provides examples.

You can reproduce the results by analyzing RWO with either Secure Coding Rulepacks or by using
the provided custom rules. To use the provided custom rules, you must first disable Secure Coding
Rulepacks.

l The "Custom Vulnerability Category Mapping" on page 124 chapter describes how to create
mappings from alternative taxonomies and standards to the Fortify Taxonomy.

The following appendices provide reference information you need to write custom rules:

l "Taint Flag Reference" on page 134—Describes the taint flags included with the Fortify Secure
Coding Rulepacks

l "Structural Rules Language Reference" on page 143—Provides syntax and grammar for structural
rules

l "Control Flow Rule Reference" on page 151—Provides syntax and grammar for control flow rules

Additional Custom Rules Documentation and Sample
Application
The following additional information is included in the ZIP file from which you extracted this
document:

l Fortify Static Code Analyzer Rules Schema—This HTML content provides the Fortify XML schema,
including valid attributes and elements, child and parent relationships between elements, whether
an element is empty or can include text, element data types, as well as element and attribute
default and fixed values.

l Fortify Structural Type and Properties Reference—This HTML content provides type and
properties reference for structural rules. Use this content when creating custom structural rules.

l Riches Wealth Online (RWO)—Sample application (riches.zip) that contains the vulnerabilities
described in the custom rule scenarios in this guide and scenario custom rules.

Related Documents
This topic describes documents that provide information about Micro Focus Fortify software
products.

Note: You can find the Fortify Product Documentation at
https://www.microfocus.com/support/documentation. Most guides are available in both PDF and
HTML formats. Product help is available within the Fortify LIM product.

Custom Rules Guide
Chapter 1: Introduction

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 11 of 157

https://www.microfocus.com/support/documentation

All Products

The following documents provide general information for all products. Unless otherwise noted, these
documents are available on the Micro Focus Product Documentation website.

Document / File Name Description

About Fortify Product Software
Documentation

About_Fortify_Docs_<version>.pdf

This paper provides information about how to access
Fortify product documentation.

Note: This document is included only with the
product download.

Fortify License and Infrastructure
Manager Installation and Usage Guide

LIM_Guide_<version>.pdf

This document describes how to install, configure, and use
the Fortify License and Infrastructure Manager (LIM),
which is available for installation on a local Windows
server and as a container image on the Docker platform.

Fortify Software System
Requirements

Fortify_Sys_Reqs_<version>.pdf

This document provides the details about the
environments and products supported for this version of
Fortify Software.

Fortify Software Release Notes

FortifySW_RN_<version>.pdf

This document provides an overview of the changes made
to Fortify Software for this release and important
information not included elsewhere in the product
documentation.

What’s New in Fortify Software
<version>

Fortify_Whats_New_<version>.pdf

This document describes the new features in Fortify
Software products.

Custom Rules Guide
Chapter 1: Introduction

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 12 of 157

https://www.microfocus.com/support/documentation

Fortify Static Code Analyzer

The following documents provide information about Fortify Static Code Analyzer. Unless otherwise
noted, these documents are available on the Micro Focus Product Documentation website at
https://www.microfocus.com/documentation/fortify-static-code.

Document / File Name Description

Fortify Static Code Analyzer
User Guide

SCA_Guide_<version>.pdf

This document describes how to install and use Fortify
Static Code Analyzer to scan code on many of the major
programming platforms. It is intended for people
responsible for security audits and secure coding.

Fortify Static Code Analyzer
Applications and Tools Guide

SCA_Apps_Tools_<version>.pdf

This document describes how to install Fortify Static Code
Analyzer applications and tools. It provides an overview of
the applications and command-line tools that enable you
to scan your code with Fortify Static Code Analyzer,
review analysis results, work with analysis results files, and
more.

Fortify Static Code Analyzer Custom
Rules Guide

SCA_Cust_Rules_Guide_<version>.zip

This document provides the information that you need to
create custom rules for Fortify Static Code Analyzer. This
guide includes examples that apply rule-writing concepts
to real-world security issues.

Note: This document is included only with the
product download.

Custom Rules Guide
Chapter 1: Introduction

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 13 of 157

https://www.microfocus.com/documentation/fortify-static-code

Chapter 2: Custom Rules Overview
This section contains the following topics:

Fortify Secure Coding Rulepacks 14

Custom Rules 14

Custom Rules and User Roles 15

Rulepacks and Common Rule XML Elements 16

Custom Descriptions 28

Fortify Secure Coding Rulepacks
Fortify Static Code Analyzer uses a knowledge base of rules to model important attributes of the
program under analysis. These rules provide meaning to relevant data values and enforce secure
coding standards applicable to the codebase. The Secure Coding Rulepacks describe general secure
coding idioms for popular languages and public APIs, out of the box. You can write custom rules for
ABAP, ASP.NET, C, C++, Java, .NET, PL/SQL, T-SQL, and VB.NET.

Although Fortify provides a wide range of rules, it is possible that your projects leverage unsupported
third-party APIs, include organization-specific libraries, or fall under the purview of proprietary
secure-coding guidelines. In this case, Fortify provides the ability to create custom rules that suit your
needs.

Custom rules can improve the completeness and accuracy of the Fortify Static Code Analyzer analysis.
This is accomplished by modeling the behavior of the security-relevant libraries, describing
proprietary business and input validation, and enforcing organization and industry-specific coding
standards.

Custom Rules
You write custom rules to extend the functionality of Fortify Static Code Analyzer and the Secure
Coding Rulepacks. For example, you might need to enforce proprietary security guidelines or analyze
a project that uses third-party libraries or other pre-compiled binaries that are not already covered by
the Secure Coding Rulepacks.

If a project uses resources for which source code is not available at analysis time, analysis of the
project succeeds, but might be incomplete until you write the custom rules that provide Fortify Static
Code Analyzer with security knowledge about these resources.

To write effective custom rules, it is important to become familiar with known security vulnerability
categories and the code constructs with which they are often related. Developing an understanding of
the types of functions that often appear in particular types of vulnerabilities facilitates the process of

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 14 of 157

targeting security-relevant functions for custom rule writing. Because the task of determining the
security relevance of a function can be challenging, time spent learning about the relationships
between types of functions and vulnerability categories can prove useful.

You must examine the individual behavior of each security-relevant function, either by reviewing
source code or with the help of API documentation, to determine the correct type of rule to represent
the specific behavior and vulnerability category associated with each of the functions.

You can then develop small test cases that exemplify the undesirable behavior you want your rules to
identify. Conversely, test cases designed to reflect correct behavior that should not be flagged also
help you to eliminate false positives from the rules you create. After you are satisfied that your rules
perform correctly in this controlled environment, the next step is to use them to perform an analysis
on a broad range of projects to verify that they behave with the expected level of fidelity.

To simplify the creation of custom rules, you can use the Fortify Custom Rules Editor, which you can
install as a component with the Fortify Static Code Analyzer Applications and Tools installer. For
installation instructions, see the Fortify Static Code Analyzer Applications and Tools Guide.

Custom Rules and User Roles
User roles also play an important part in creating and using custom rules. For example, an individual
auditor might require different custom rules than a security team. The rest of this section describes
common user roles and identifies custom rules specific to those roles.

Individual Auditor

An individual auditor performs a single security review of a project for a specific organization. A
security researcher who looks for bugs in a piece of public software also fits into this role. The goal of
this user is to identify specific vulnerabilities based on a narrow set of security criteria.

A person in this role develops and uses custom rules along a narrow set of parameters and does not
strive for breadth of coverage. An example of this is to address the strategic shortcoming of the built-
in knowledge base of rules.

This includes identifying specific classes of bugs or modeling the behavior of APIs that are likely to
lead to vulnerabilities targeted in the current audit.

Development of a large body of custom rules is not a requirement for this user. Any effort that this
individual puts into customization should be weighed against the benefit that the customization
provides.

Central Security Team

A central security team is typically responsible for developing custom rules that identify a broad set
of vulnerabilities across multiple code bases within an organization. The central security team
provides value by developing large databases of rules that improve the static analysis results during
ongoing audits.

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 15 of 157

If the central security team is responsible for auditing the results produced by the custom rules, then
you might include rules that provide an auditor with a checklist of properties to verify in the audit.

However, if the development team responsible for each project reviews the static analysis tool results
directly, then the tolerance for issues that do not correspond directly to security vulnerabilities or
other programming bugs would likely be much lower.

In either case, the goal is to produce a large knowledge base of custom rules relevant to projects
under analysis, because the rule writers have incentive to improve analysis results during ongoing
audits.

Development Team

If a development team is responsible for both implementing custom rules and auditing the results of
the static analysis tool, the extent to which you want to customize varies based on the security
experience of the development team. If the development team is only tangentially involved in
security, their use of custom rules might focus on a narrow field of relevant bugs.

Rulepacks and Common Rule XML Elements
Fortify Static Code Analyzer comprises multiple analyzers that perform different types of analysis and
find different types of problems in code. Each analyzer supports one or more distinct rule types.
Secure Coding Rulepacks are represented in XML. A Rulepack contains one or more rules of an
arbitrary type.

This document covers these rule types (listed in alphabetical order):

l AliasRule
l CharacterizationRule (for Dataflow Analyzer)
l ConfigurationRule
l ContentRule
l ControlflowRule
l CustomDescriptionRule
l DataflowCleanseRule
l DataflowEntrypointRule
l DataflowPassthroughRule
l DataflowSinkRule
l DataflowSourceRule
l RegexRule
l ResultFilterRule
l StructuralRule
l SuppressionRule

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 16 of 157

RulePack Element

The root element of a Rulepack is <RulePack>. The <RulePack> element includes header
information that describes the Rulepack.

The following example shows a <RulePack> element:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<RulePack>

<RulePackID>06A6CC97-8C3F-4E73-9093-3E74C64A2AAF</RulePackID>
<Name><![CDATA[
Sample Custom Fortify Rulepack

]]></Name>
<Version>0000.0.0.0000</Version>
<Language>java</Language>
<Description><![CDATA[
Custom Rules for Java

]]></Description>
<Rules version="23.1">...</Rules>

</RulePack>

The following table describes the <RulePack> child elements.

Element Description

RulePackID A unique identifier for the Rulepack. By convention, Fortify uses a globally
unique identifier (GUID) generator to define Rulepack and rule identifiers to
ensure that the identifiers are unique.

Name A name for the Rulepack.

SKU A global unique identifier.

Language (Optional) The programming language applicable to all rules in the
Rulepack. Fortify Static Code Analyzer only loads the Rulepack when

processing source files of the specified language. If the <Language>
element is not included, Fortify Static Code Analyzer always loads the
Rulepack.

Version (Optional) An arbitrary numeric version used to relate multiple versions of
the same Rulepack (Rulepacks with the same Rulepack identifier).

Description A description of the Rulepack.

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 17 of 157

Element Description

Locale (Optional) The locale for the Rulepack. The valid values are en, es, ja, ko,
pt_BR, zh_CN, and zh_TW.

Rules Contains one <RuleDefinitions> element. See "Rules Element" below.
This element contains the following attribute:

l version—The version of the rules schema for which the custom rules
are written.

Rules Element

The <Rules> element contains all the rule definitions.

<Rules version="23.1">
<RuleDefinitions>

<!--... rules go here ...-->
<xyzRule>...</xyzRule>

...
<xyzRule>...</xyzRule>

</RuleDefinitions>
</Rules>

The following table describes the <Rules> child elements.

Element Description

RuleDefinitions Contains one or more top-level rules.

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 18 of 157

xyzRule Each rule has a unique rule element: <xyzRule> where xyz is a valid rule
type. Examples of valid rule elements are <StructuralRule>,
<DataflowRule>, <ControlflowRule>, and so on. This element has the
following required attributes:

l formatVersion—The version of Fortify Static Code Analyzer with which
the rule is compatible. Specify the installed Fortify Static Code Analyzer
version number to take advantage of all the current functionality. To
determine the Fortify Static Code Analyzer version, type

sourceanalyzer -v on the command line. The version number format
is <major>.<minor>.<patch>.<buildnumber> (for example, 23.1.0.0140).
Only the major and minor portions of the version are required.

l language—The programming language to which the rule applies. The
valid values for language are abap, cpp, dotnet, java, and sql.

The language attribute can apply to more than one programming
language. The following table describes how the language attribute
value is applied for each programming language.

Language
Attribute Rule applies to...

abap ABAP

cpp C, C++, Objective-C, and Objective-C++

dotnet .NET (C# and VB.NET)

java Java, JSP, kotlin, Scala, Android, and Xamarin

Note: For Xamarin projects, the Java APIs used in
C# are converted to the associated Java API.

sql SQL, T-SQL, and PL/SQL

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 19 of 157

Common Rule Elements

The top-level rule element contains different elements depending on the rule type. Fortify Static Code
Analyzer rules share a few common elements. All rules have a <RuleID> element.

<xyzRule formatVersion="23.1">
<RuleID>...</RuleID>
<MetaInfo>
<Group name="Accuracy">4.0</Group>
<Group name="Impact">5.0</Group>
<Group name="Probability">4.0</Group>

</MetaInfo>
<Notes>...</Notes>
...

</xyzRule>

The following table describes the common child elements of the top-level rule element.

Element Description

RuleID A required unique identifier for the rule, which can be an arbitrary string of
characters. As with Rulepack IDs, by convention Fortify uses a globally unique
identifier (GUID) generator for unique rule identifiers.

MetaInfo (Optional) Provides additional information about a rule for prioritizing analysis

results. The child element is <Group>. Use the <Group> element's name attribute to
specify accuracy, impact, and probability for a vulnerability. The valid values are 0.1
to 5.0.

You can specify the following information for the name attribute:

l Accuracy—Possibility that the rule correctly identifies a vulnerability
l Impact—Negative outcome resulting from a vulnerability
l Probability—Likelihood that the vulnerability is discovered and acted upon

Notes (Optional) Your own internal comments about the rule.

The following top-level rule elements are common only to rules that directly cause the respective
analyzer to report an issue:

<xyzRule formatVersion="23.1">
<RuleID>C9ECD6EC-DAA1-41BE-9715-033F74CE664F</RuleID>
<VulnCategory>Poor Error Handling</VulnCategory>

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 20 of 157

<DefaultSeverity>2.0</DefaultSeverity>
<Description>...</Description>

</xyzRule>

The following table describes the rule elements common to vulnerability-producing rules.

Element Description

VulnKingdom (Optional) Vulnerability kingdom assigned to issues the rule uncovers.

VulnCategory Vulnerability category assigned to issues the rule uncovers.

VulnSubcategory (Optional) Vulnerability subcategory assigned to issues the rule uncovers.

Description Description of the vulnerability the rule identifies. The <Description>
element can contain any of the following elements: <Abstract>,
<Explanation>, <Recommendations>, <References>, and <Tips>. This
element has the following attribute:

l ref—(Optional) Specifies a description identifier to use a Fortify
description for your custom rule. You can find description identifiers at
https://vulncat.fortify.com. You can find the description identifier at the
bottom of each vulnerability description. For more information, see
"Adding Custom Descriptions to Fortify Rules" on page 28.

DefaultSeverity This element is no longer used but is required for backward compatibility.

Specify a value of 2.0 for this element.

FunctionIdentifier (Optional) Specifies a rule that refers to a function or method call. See
"FunctionIdentifier Element" below. This element has the following attribute:

l id—(Optional) Specifies a name for the function identifier so you can
refer to it elsewhere.

FunctionIdentifier Element

Rules that refer to function or method calls (as opposed to configuration files, property files, HTML,
and other content) can use the <FunctionIdentifier> element.

Note: Any rule that contains the <FunctionIdentifier> element must have the language
attribute specified for the rule.

<xyzRule formatVersion="23.1" language="java">
<RuleID>...</RuleID>

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 21 of 157

https://vulncat.fortify.com/

<VulnCategory>...</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description>...</Description>
<FunctionIdentifier>

<NamespaceName>
<Value>java.lang</Value>

</NamespaceName>
<ClassName>

<Value>String</Value>
</ClassName>
<FunctionName>

<Value>trim</Value>
</FunctionName>
<ApplyTo implements="true" overrides="true" extends="true"/>
<Parameters>...</Parameters>

</FunctionIdentifier>
</xyzRule>

The following table describes the <FunctionIdentifier> child elements. For object-oriented
languages, always specify <ClassName> and <NamespaceName>.

Element Description

FunctionName The name of the method or function that the rule matches.

ClassName (Optional) The name of the class that the rule matches. If you do not specify

a <ClassName>, the rule only matches functions that are not inside a class.
To match a function in any class, specify the class name using the

<Pattern>.*</Pattern> child element. To match a nested class, use the
dot notation (for example, <Value>OuterClass.NestedClass</Value>).

Note: For .NET languages, the convention for the <ClassName> of a
generic class is to append the class name with an at sign (@) and the
number of type parameters. Example: for System.Func<T, TResult>,
the <ClassName> is <Value>Func@2</Value>.

NamespaceName (Optional) The name of the package or namespace that the rule matches. If

you do not specify a <NamespaceName>, the rule only matches functions
that are not inside a namespace.

Note: In Java, the namespace name is equivalent to the Java package
name.

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 22 of 157

Element Description

ApplyTo (Optional) Controls how the rule matches against classes that extend the
specified class or implement the specified interface. This element contains
the following attributes:

l implements—(Optional) True indicates that the rule should match
methods that implement the interface methods that the rule specifies.

l overrides—(Optional) True indicates that the rule should match
methods defined in sub-classes that override the method that the rule
specifies.

l extends—(Optional) True indicates that the rule should match methods
in classes that extend the class that the rule specifies.

The default value of all three <ApplyTo> element attributes is false.

ReturnType (Optional) Limits the functions matched to the functions with the specified
return type. A return type is a language-specific primitive type or a defined

type (for example, java.lang.String or std::string). You can
optionally modify types with *, [], or & representing pointer, array, or C++
references, respectively. To match a nested type, use the dot notation (for

example, OuterType.NestedType).

MatchExpression (Optional) Expression to match a function. You cannot combine this element

with <FunctionName>, <ClassName>, <NamespaceName>, <ApplyTo>,
<Modifiers>, <Parameters>, or <ReturnType>.

Parameters (Optional) Limits the methods that the rule matches based on the type
signature of the function. See the "Parameters Element" on the next page.

Modifiers (Optional) Limits the methods that the rule matches to those declared with
the specified modifiers. See the "Modifiers Element" on page 25.

Except (Optional) Specifies nested <FunctionIdentifier> elements that should
not match.

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 23 of 157

The <FunctionName>, <ClassName>, and <NamespaceName> elements are expressed using one of
the child elements described in the following table.

Element Description

Value Fortify Static Code Analyzer interprets the name as a standard string. For example:

<Value>java.util</Value>

Pattern Fortify Static Code Analyzer interprets the name as a valid Java regular expression.
Make sure that you escape regular expression symbols. For example:

<Pattern>java\.util</Pattern>

Parameters Element

The <Parameters> element limits the methods that the rule matches. The following example shows
a <Parameters> element with both optional child elements:

<Parameters>
<ParamType>java.lang.String</ParamType>
<WildCard min="0" max="2"/>

</Parameters>

The following table describes the <Parameters> child elements.

Elements Description

ParamType Specifies a single parameter of a language-specific primitive type or a defined type

(for example, java.lang.String or std::string). You can optionally modify
types with *, [], or & representing pointer, array, or C++ references, respectively.
To match a nested type, use the dot notation (for example,

OuterType.NestedType).

Note: For .NET builtin types, you can use the following types as the

<ParamType> element parameter. Specify all other custom types by their fully
qualified namespace.

.NET Type ParamType Parameter

System.Boolean boolean

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 24 of 157

Elements Description

.NET Type ParamType Parameter

System.Byte byte

System.SByte short

System.Char char

System.Decimal
System.Double

double

System.Single float

System.Int32
System.UInt32

int

System.Int64
System.UInt64

long

System.Object System.Object

System.Int16
System.UInt16

short

System.String System.String

WildCard (Optional) Represents a variable number of arbitrarily-typed parameters at the
end of the parameter list for the method. This element can contain the following
attributes:

l min—Specifies the fewest number of wildcard parameters the rule allows
l max—Specifies the maximum number of wildcard parameters the rule allows

Modifiers Element

The <Modifiers> element restricts the methods that the rule matches to those declared with the
specified modifiers.

<Modifiers>
<Modifier>static</Modifier>

</Modifiers>

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 25 of 157

The following table describes the <Modifiers> child element.

Element Description

Modifier Specifies the modifier type. Fortify supports the following modifiers:

l native
l final
l private
l protected
l public
l static
l suspend (Kotlin only)

Conditional Elements

Many rule types allow matching to be further restricted using a conditional expression with the
<Conditional> element. Function identifiers specify the functions or methods to which the rule
pertains. Conditional expressions restrict the calls to those functions that the rule matches. You can
write conditional expressions to examine constant values (boolean (true/false), integer, string (case-
insensitive), and null) used in method calls and the types of method arguments (as distinct from the
declared formal parameter types of the method). For dataflow sinks, conditional expressions can also
examine taint flags.

The following example shows various conditional elements:

<Conditional>
<And>

<Not>
<TaintFlagSet taintFlag="XSS"/>

</Not>
<And>

<ConstantEq argument="0" value="strong"/>
<ConstantGt argument="1" value="1023"/>
<ConstantLt argument="2" value="2048"/>

</And>
<IsType argument="0">

<NamespaceName>
<Value>javax.servlet</Value>

</NamespaceName>
<ClassName>

<Pattern>(Http)?ServletRequest</Pattern>
</ClassName>

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 26 of 157

</IsType>
<Or>

<NameEq argument="3" name="xyz"/>
</Or>

</And>
</Conditional>

The following table describes the <Conditional> child elements.

Element Description

And

Or

Not

Boolean logic operators that apply the corresponding logical operation to
the nodes they contain.

IsConstant True if the zero-indexed argument attribute is a compile-time numeric or
string constant (a literal or a variable/field that is assigned exactly once).

IsType True if the zero-indexed argument attribute matches the
<NamespaceName> and <ClassName> elements specified inside the
<IsType> element. To match a nested type, use the dot notation (for
example, OuterType.NestedType).

ConstantEq True if the zero-indexed argument attribute is a compile-time numeric or
string constant that matches the value specified by the value attribute. To
match a nested type, use the dot notation (for example,

OuterType.NestedType).

ConstantGt True if the zero-indexed argument attribute is a compile-time numeric
constant that is greater than the value specified by the value attribute.

ConstantLt True if the zero-indexed argument is a compile-time numeric constant that
is less than the value specified by the value attribute.

ConstantMatches True if the zero-indexed argument attribute contains a substring that
matches the regular expression specified in the <Pattern> child element.

NameEq True if the zero-indexed argument attribute name argument equals the
value specified for the name attribute.

NameMatches True if the zero-indexed argument attribute name argument contains a
substring that matches the string specified in the <Pattern> child element.

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 27 of 157

Element Description

TaintFlagSet True for taint paths that include the taint flag specified by the taintFlag
attribute.

Note: This element is only valid for dataflow sink rules.

Custom Descriptions
Some organizations want to either add custom descriptions to Fortify rules or add Fortify descriptions
to custom rules. Custom descriptions enable you to add organization-specific content to issues the
Fortify Secure Coding Rulepacks produce. Custom description content can include organization-
specific secure coding guidelines, best practices, references to internal documentation, and so on.
Adding Fortify descriptions to custom rules enables you to leverage descriptions Fortify creates in
custom rules that identify categories of vulnerabilities that Secure Coding Rulepacks already
reported.

l "Adding Custom Descriptions to Fortify Rules" below
l "Adding Fortify Descriptions to Custom Rules" on page 30

Adding Custom Descriptions to Fortify Rules

You can add custom descriptions with the <CustomDescriptionRule> element. Each custom
description rule defines new description content and specifies a set of Fortify rules that determine
how it is applied. By default, the Fortify Static Code Analyzer applications display the custom
descriptions before the Fortify descriptions.

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 28 of 157

The following custom description rule example adds a custom <Abstract> and <Explanation> for
SQL Injection and Access Control: Database issues:

<CustomDescriptionRule formatVersion="23.1">
<RuleID>D40B319C-F9D6-424F-9D62-BB1FA3B3C644</RuleID>
<RuleMatch>

<Category>
<Value>SQL Injection</Value>

</Category>
</RuleMatch>
<RuleMatch>

<Category>
<Value>Access Control</Value>

</Category>
<Subcategory>

<Value>Database</Value>
</Subcategory>

</RuleMatch>
<Description>

<Abstract>[custom abstract text]</Abstract>
<Explanation>[custom explanation text]</Explanation>

</Description>
<Header>[string to replace Custom]</Header>

</CustomDescriptionRule>

To add custom descriptions to Fortify rules, do the following:

1. Define the custom description content—Use the <Description> and <Header> elements of the
custom description rule to define the custom description content.

2. "Identify Rules to Modify" on the next page—Use the <RuleMatch> element to identify the rules
to which Fortify Static Code Analyzer adds the custom description content.

The following table describes the <CustomDescriptionRule> child elements.

Element Description

RuleID A required unique identifier for the rule. See "Common Rule Elements" on
page 20.

RuleMatch Specifies the criteria to identify which rules Fortify Static Code Analyzer
adds the custom description content.

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 29 of 157

Description The common <Description> element described in "Common Rule
Elements" on page 20. The custom description can specify all or a subset of

the <Description> child elements.

Header (Optional) Specifies text to replace the word "Custom" when Fortify Static
Code Analyzer applications display the rule descriptions.

Identify Rules to Modify

A custom description can contain several rule matches. Each rule match specifies rules based on any
combination of category, subcategory, rule identifier, and description identifier. Fortify Static Code
Analyzer applies a custom description to issues a rule produces only if the rule matches all criteria
specified in the rule match.

The following table describes the <RuleMatch> child elements.

Element Description

Category Vulnerability category

Subcategory Vulnerability subcategory

RuleID Identifier of the rule to match

DescriptionID Identifier for the description you want to use (for example,

desc.dataflow.java.sql_injection)

For example, a <RuleMatch> element that specifies
<Category><Value>Buffer Overflow</Value></Category> and
<Subcategory><Value>Obsolete</Value></Subcategory>matches only Buffer
Overflow:Obsolete issues. The custom description content is not applied to issues in other Buffer
Overflow sub-categories, such as Buffer Overflow: Off-by-One.

A rule need only satisfy one or more rule matches for a custom description rule. For example, a
custom description rule with a rule match for <Category><Value>Buffer
Overflow</Value></Category> and another distinct rule match for
<Subcategory><Value>Obsolete</Value></Subcategory>, matches any issues in the Buffer
Overflow category or the Obsolete subcategory.

Adding Fortify Descriptions to Custom Rules

You can use Fortify descriptions to describe the issues that custom rules find. To use a Fortify
description in a custom rule, you must first determine the identifier for the description you want to
use. Description identifiers are available on https://vulncat.fortify.com. After you locate the identifier
for the description you want to use, set the ref attribute of the custom rule to the identifier of the
Fortify description.

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 30 of 157

https://vulncat.fortify.com/

Note: To use this feature, make sure that the description IDs are unique across all Rulepacks.

For example, the following rule produces SQL injection results with the same description as SQL
injection results from Fortify rules for Java:

<DataflowSinkRule formatVersion="23.1" language="java">
...
<Description ref="desc.dataflow.java.sql_injection"/>
...

</DataflowSinkRule>

Custom Rules Guide
Chapter 2: Custom Rules Overview

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 31 of 157

Chapter 3: Structural Analyzer Rules
This section contains the following topics:

Structural Analyzer and Custom Rules 32

XML Representation of Structural Analyzer Rules 38

Custom Structural Rule Scenarios 38

Structural Analyzer and Custom Rules
The Structural Analyzer matches arbitrary program constructs in source code. Unlike other Fortify
Static Code Analyzer analyzers, it is not designed to find problems that arise from flow of execution or
data. Instead, it detects issues by identifying certain patterns of code.

Structural Tree

The Structural Analyzer operates on a model of the program source code called the structural tree.
The structural tree is made up of a set of nodes that represent program constructs such as classes,
functions, fields, code blocks, statements, and expressions.

Nodes in the structural tree can have a single parent and many children. For example, a node that
represents a field is the child of a node that represents the class in which that field is declared.
Likewise, a node that represents an expression is the child of a node that represents the statement in
which that expression appears.

Each node in the structural tree also has a set of properties. Some properties encode simple values,
such as the name of a function or the type of a variable. Properties can also express relationships
between nodes that are not directly connected by a parent-child relationship. For instance, a property
might be used to connect the use of a variable in one part of a function to its declaration in another, a
class declaration to an interface it implements, or a function call expression to the declaration of the
function it calls.

Sometimes a node might be connected to another node both via a parent or child connection and by a
property. An assignment statement, for example, has two child expressions (one on the left-hand side
of the = and one on the right-hand side). These expressions can also be reached individually by the
lhs and rhs properties. This enables rules to perform more precise queries against the tree. For
instance, a query that looks for an assignment with x as a child would match both x = y and y = x,
but a query that looks for an assignment with x as lhs would match x = y but not y = x.

Each node in the structural tree has a type, referred to as the structural type. The structural type of a
node that represents a function declaration is different than the structural type of a node that
represents a class declaration, and is likewise different from the structural type of a node that
represents an expression.

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 32 of 157

Structural types enable you to write queries that look for certain types of nodes. The structural type
of a node also determines the set of properties that it has. The Structural Type and Property
Reference provides a full list of all structural types and their properties.

Structural Tree Query Language

The structural tree query language enables the Structural Analyzer to perform complex matches
against the structural tree. Each structural rule contains a single query. The Structural Analyzer
reports an issue for each construct in the program that matches that query.

To write a query that matches a specific code construct, you must understand how the code looks
when represented in a structural tree. The query expresses constraints in terms of the structural type
of nodes to match and the relationships between those nodes (parent-child and property
relationships).

Structural Tree Examples

The following examples shows the construction of a simplified structural tree for a small Java
program. Each example includes program source code, a diagram of the structural tree, and an
explanation.

These examples include structural tree diagrams for illustrative purposes. These diagrams exclude
some database attributes for the sake of simplicity. As the example program becomes more complex,
some edges shown in the tree are omitted. This is to make the illustration easier to read.

Use the following legend to interpret diagrams in the examples.

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 33 of 157

Example 1

The following program consists only of a class with a single member field:

class C {
private int f;

}

In the structural tree, the field is related to the class with the fields property, which lists all the fields of
a class.

Example 2

This example adds an empty function to the class:

class C {
private int f;
void func() {
}

}

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 34 of 157

The structural tree now includes nodes for the function and its body block.

A query to specifically match the field in this code could look like the following:

Field field: field.name == "f" and field.enclosingClass is
[Class class: class.name == "C"]

The query includes constraints on the name properties of the class and field nodes, so it would no
longer match the code if the class or field were renamed. Normally, structural queries are designed to
be less specific than this example.

Example 3

This example adds a local variable declaration to the function:

class C {
private int f;
void func() {

int x;
}

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 35 of 157

The body block now has a child node for the statement that declares the variable.

Example 4

The following final version of the program has an additional statement that performs arithmetic on
field value and assigns the result to a local variable:

class C {
private int f;
void func() {

int x;
x = f + 1;

}
}

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 36 of 157

The structural tree now includes an assignment statement that relates two expressions. The left-hand
side expression (lhs) denotes the location being assigned to, while the right-hand side (rhs) is the
value being assigned. The expression on the right-hand side of the assignment breaks down further
into an operation (addition) on two components: the field and an integer. The expressions that access
the field and variable include properties that connect to the corresponding declarations.

As an example, the following query matches any assignment in the program in which the location
being written to is a local variable and the expression for the value includes a read of a field, which
belongs to the same class as the class in which the function appears. This matches the previous
example code. Unlike the query in "Example 2" on page 34, it does not include constraints on names. It
is general enough to match similar code patterns in other parts of the program.

AssignmentStatement a: a.lhs is [VariableAccess:] and a.rhs contains
[FieldAccess fa: fa.field.enclosingClass ==
a.enclosingFunction.enclosingClass]

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 37 of 157

XML Representation of Structural Analyzer Rules
The following example shows a structural rule that matches on all instances of functions named
hashcode:

<StructuralRule formatVersion="23.1" language="java">
<RuleID>5707596F-F163-7D69-35F6-B18C9FEFDB1B</RuleID>

 <VulnCategory>Confusing Method Name</VulnCategory>
 <DefaultSeverity>2.0</DefaultSeverity>
 <Description/>
 <Predicate><![CDATA[
 Function: name is "hashcode"
]]></Predicate>
</StructuralRule>

The following table describes the XML elements introduced in the structural rule shown in the
previous example.

Element Description

Predicate This element specifies one or more structural queries. If a program construct

matches the query contained in any <Predicate> element, the Structural Analyzer
reports a vulnerability for that program construct. Enclose the contents of the

<Predicate> element in a CDATA section to avoid the need to escape any XML
special characters in the query.

Custom Structural Rule Scenarios
This section provides examples of structural rules. You can use these examples as a base from which
to write your custom rules. Match your requirement with one of the examples, and tailor the rules to
suit your software.

This section contains the following topics:

Leftover Debug 39

Dangerous Function Calls 40

Overly Broad Catch Blocks 42

Password in Comments 45

Poor Logging Practice 46

Empty Catch Block 47

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 38 of 157

Leftover Debug

This scenario highlights the rules necessary for the Structural Analyzer to detect leftover debug code.
This scenario demonstrates how leftover debug code can introduce unexpected vulnerabilities in a
production environment. It then shows custom rules that identify this type of vulnerability.

This scenario highlights the following type of vulnerability:

l Leftover debug code—Debug code can expose unintended functionality in a deployed application.

This scenario highlights the following analysis and rule concepts:

l Function construct objects
l Slot construct objects
l Startswith operator
l Structural rule

Source Code

The application contains methods that developers call to debug the retrieval of sensitive data. The
following code shows how a developer temporarily debugs this method. The debugTransactions()
method is called to examine the contents of the transactions.

public static List getTransactions(String acctno) throws Exception {
...
// TODO: remove this before deploying to production
debugTransactions(transactions);
return transactions;

}

The following code shows how the application debugs the transaction:

public static void debugTransactions(List transactions) throws Exception {
Logger debugLogger = Logger.getLogger(TransactionService.class.getName

());
debugLogger.setLevel(Level.FINEST);
FileHandler fh = new FileHandler("debug.log");
fh.setLevel(Level.FINEST);
debugLogger.addHandler(fh);

for (int index=0; index < transactions.size(); index++) {
Transaction proposedTransaction = (Transaction)transactions.get(index);

debugLogger.finest("Request transaction statement: "

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 39 of 157

+ proposedTransaction.getId()+": "
+ proposedTransaction.getAcctno() + "; "
+ proposedTransaction.getAmount() + "; "
+ proposedTransaction.getDate() + "; "
+ proposedTransaction.getDescription());

}
}

This method records sensitive data in an unencrypted log file. If the application executes this method
within a production environment, sensitive data is written to an unencrypted file. This raises the risk
of accidental disclosure of sensitive data to a third party.

Rules

There is a common method signature that identifies every debug method in the application. The code
in the "Source Code" on the previous page illustrates that each debug method's name starts with the
word debug. Also, the method accepts one parameter of type java.util.List.

The structural rule in the following example identifies all methods that match this debug signature:

<StructuralRule formatVersion="23.1" language="java">
<RuleID>8206ED21-9FB0-44AC-9058-6FCDA601E699</RuleID>
<VulnCategory>J2EE Bad Practices</VulnCategory>
<VulnSubcategory>Leftover Debug Code</VulnSubcategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<Predicate><![CDATA[
Function: name startsWith "debug" and
parameterTypes.length == 1 and
parameterTypes[0].name == "java.util.List"

]]></Predicate>
</StructuralRule>

The analyzer uses this rule to identify and report all debug methods. First, the rule inspects each
function object's name property to verify that the method's name begins with the word debug. Then
the rule verifies that there is only one parameter to this method. The rule then verifies that the
parameter is of type java.util.List.

Dangerous Function Calls

This scenario highlights the rules that are necessary for the Structural Analyzer to detect dangerous
function call vulnerabilities. The scenario illustrates why an application should never call particular
methods. It then shows how the Structural Analyzer uses structural rules to identify the dangerous
function call vulnerability.

This scenario highlights the following vulnerabilities:

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 40 of 157

l Dangerous method—Never use functions that are unsafe

This scenario highlights the following analysis and rules concepts:

l FunctionCall construct object
l Structural rule

Source Code

A cross-site scripting vulnerability exists in the application. A validation function attempts to mitigate
this vulnerability. However, it is inadequate and does not fully remove the cross-site scripting
vulnerability. Do not use this function for any current or future projects within the organization.

The application receives messages from the user and writes the contents to a database. Persistent
cross-site scripting vulnerabilities might result.

The following code sample shows a method that is called to filter any malicious characters from the
messages before the application writes them to disc:

private static Message validateMessage(Message incomingMessage) throws
Exception {

// Validate sender
String incomingSender = incomingMessage.getSender();
if ((incomingSender == null) || (incomingSender.length() == 0))

throw new Exception("invalid sender in message");

// Validate subject
String incomingSubject = incomingMessage.getSubject();
if (incomingSubject == null)

throw new Exception("invalid subject in message");

// Validate severity
String incomingSeverity = incomingMessage.getSeverity();
if ((incomingSeverity == null) || (incomingSeverity.length() == 0))

throw new Exception("invalid sender in message");

// Validate body
String incomingBody = incomingMessage.getBody();
if (incomingBody == null)

throw new Exception("invalid sender in message");
return incomingMessage;

}

The function does not perform an allow list-type validation of the incomingMessagemessage, and
no application code should ever call this function.

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 41 of 157

Rules

The following structural rule identifies all instances where the application calls the
MessageService.validateMessage()method:

<StructuralRule formatVersion="23.1" language="java">
<RuleID>95C67A96-5AF7-402E-B451-6CEFF4EB8973</RuleID>
<VulnKingdom>API Abuse</VulnKingdom>
<VulnCategory>Dangerous Method</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<Predicate><![CDATA[

FunctionCall call: call.function.name == "validateMessage" and
call.function.enclosingClass.name ==

"com.fortify.samples.riches.model.MessageService"
]]></Predicate>

</StructuralRule>

The rule uses the FunctionCall construct object to inspect every method that the application calls.
The Structural Analyzer reports a vulnerability when the conditions of the rule are met.

Overly Broad Catch Blocks

This scenario demonstrates how overly broad catch blocks can cause security issues. The scenario
then provides examples of rules that work with the Structural Analyzer to find vulnerabilities caused
by overly broad catch blocks.

This scenario highlights the following vulnerability:

l Poor error handling-broad catch—The catch block handles a broad swath of exceptions, potentially
trapping dissimilar issues or problems that should not be dealt with at this point in the program.

This scenario highlights the following analysis and rules concepts:

l CatchBlock construct object
l Contains operator
l Exception construct object
l Not operator
l ThrowStatement construct object
l Structural rule

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 42 of 157

Source Code

The following code shows an example with overly broad exception handling code:

public static void addMessage(Message message) {
Session session = null;
try {

session = ConnectionFactory.getInstance().getSession();
Transaction tx = session.beginTransaction();
session.save(message);
tx.commit();
session.flush();
session.close();
}

catch(Exception e) {
// Treat all exceptions the same here

}
}

The catch block catches the generic Exception class. Ideally, separate catch blocks handle specific or
relevant security exceptions individually. Programs should process these security exceptions
separately to create audits that are necessary to track bugs and detect security breaches.

Not every overly broad catch block represents a problem. For example, the following code catches all
exceptions and throws them up the call stack:

public static boolean isAdmin(int roleid) throws Exception {
boolean auth = false;
Connection conn = ConnFactory.getInstance().getConnection();
ResultSet rs = null;
try {

Statement statement = conn.createStatement();
rs = statement.executeQuery("SELECT rolename FROM auth WHERE

roleid = " + roleid);
rs.next();

if (rs !=null && rs.getString("rolename").equals("admin"))
auth = true;

conn.close();
}
catch(Exception e) {

throw e;
}
return auth;

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 43 of 157

}

A higher catch block can handle the exception correctly. It is also acceptable to perform a broad catch
at the highest-level method of the application. The following code shows an example of an
appropriately broad catch block that catches all exceptions immediately before they exit the program:

public static void main(String args[]) {
try {

BannerAdServer obj = new BannerAdServer();
BannerAdSource stub =

(BannerAdSource)UnicastRemoteObject.exportObject(obj, 0);

// Bind the remote object's stub in the registry
Registry registry = LocateRegistry.getRegistry();
registry.bind("BannerAdSource" stub);

}
catch (Exception e) {

// Process any exceptions that are not handled anywhere else
}

Rules

A rule needs to report all overly broad catch blocks that are not defined within the main()method
and do not throw the exception up the call stack. The following rule reports catch blocks that meet
these requirements:

<StructuralRule formatVersion="23.1" language="java">
<RuleID>C9ECD6EC-DAA1-41BE-9715-033F74CE664F</RuleID>
<VulnCategory>Poor Error Handling</VulnCategory>
<VulnSubcategory>Overly Broad Catch</VulnSubcategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<Predicate><![CDATA[

CatchBlock: exception.type.name == "java.lang.Exception" and
not contains [ThrowStatement:] and
not (enclosingFunction.name == "main")

]]></Predicate>
</StructuralRule>

This rule identifies all catch blocks in the program that use the catch blocker and inspects the class
type of the exception caught in each catch block. The exception.type.name property describes the
name of the class specified by the catch block. This property must equal the generic exception class
java.lang.Exception for the rule to report this catch block.

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 44 of 157

The rule then excludes catch blocks that contain a ThrowStatement, which represents a throw
statement inside the catch block.

The catch block construct object's enclosingFunction.name property defines the name of the
method that contains the catch block, which must not equal the value main.

When a catch block satisfies all three of these conditions, the Structural Analyzer reports an overly
broad catch vulnerability.

Password in Comments

This scenario demonstrates a rule that enables the Structural Analyzer to detect passwords in
comments. This includes how passwords might appear in comments and how an attacker can exploit
this vulnerability. The scenario then shows how the Structural Analyzer uses rules to identify this type
of vulnerability.

This scenario highlights the following vulnerability:

l Password management: passwords in comments—Hardcoded passwords can compromise system
security in a way that you cannot easily remedy.

This scenario highlights the following analysis and rules concepts:

l Comment construct object
l Java regular expressions
l Structural rule

Source Code

If the source code of an application contains authentication credentials for the production database,
anyone with access to the development environment and its source code can access data in a
production environment.

The following code shows hardcoded credentials in the ProfileService class:

public class ProfileService {
// NOTE: sample profiles can be reproduced through internal server
// host: db1.riches.com; username: service, password: passw0rd1!

{

Rules

The following structural rule identifies text that contains the word password in a comment block,
inline comment, or JavaDoc:

<StructuralRule formatVersion="23.1" language="java">
<RuleID>C938AE93-EA38-403b-ABDA-3F01BEFA7933</RuleID>
<VulnCategory>Password Management</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 45 of 157

<Description/>
<Predicate><![CDATA[

Comment c: (c.doc or c.inline or c.block)
and c.text matches "(?i).*password.*"

]]></Predicate>
</StructuralRule>

First, this rule inspects the doc, inline, and block properties of every comment construct object in
the application. If one of these properties is true, the comment satisfies the criterion that it must be a
block, inline, or JavaDoc comment.

Then the rule inspects the text property of the object text to see if the value of the property value
matches the Java regular expression '(?i).*password.*'. This expression matches any text that
contains password anywhere in its value, regardless of capitalization.

The Structural Analyzer reports an issue when it finds a comment that satisfies both of these
conditions.

Poor Logging Practice

This scenario demonstrates a rule that enables the Structural Analyzer to identify logging objects
that are not declared static and final. The scenario demonstrates a poor logging practice. Then it
illustrates the way the Structural Analyzer uses rules to identify this type of issue.

This scenario highlights the following vulnerability:

l Poor logging practice: logger not declared static final—Declare loggers to be static and final.

This scenario highlights the following analysis and rules concepts:

l Class construct objects
l Contains operator
l Field construct objects
l Not operator
l Structural rule

Source Code

A good programming practice is to share a single logger object between all the instances of a specific
class and to use the same logger throughout the duration of the application. The way the application
implements ConnectionClass class in the following example illustrates a violation of this practice:

public class ConnectionFactory {
private static Logger log =

Logger.getLogger(ConnectionFactory.class.getName());
private static ConnectionFactory instance = null;

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 46 of 157

Rules

The following rule reports any instance of the java.util.logging.Logger object that is declared
as a field but is not using both the static and final keywords:

<StructuralRule formatVersion="23.1" language="java">
<RuleID>B95EB686-8EBC-498F-B332-55E31F9DFB8A</RuleID>
<VulnCategory>Poor Logging Practice</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<Predicate>

Field f: not (static and final) and type.definition.supers contains
[Class: name == "java.util.logging.Logger

</Predicate>
</StructuralRule>

To identify an improperly declared Logger field object, the Structural Analyzer inspects the static and
final properties of every Field construct object. If either value is false, the field satisfies the rule's first
set of conditions.

After a Field construct object satisfies the first condition, the rule inspects the Field object's
declared type. The field must be an instance of a java.util.logging.Logger object or an
extension that inherits from that class.

If a Field construct object satisfies both conditions, the Structural Analyzer reports the field
declaration as an issue.

Empty Catch Block

This scenario shows a rule for the Structural Analyzer to detect empty catch block vulnerabilities. The
scenario demonstrates how an attacker can exploit an empty catch block vulnerability. It then shows
how the Structural Analyzer uses structural rules to identify this type of vulnerability.

The scenario highlights the following vulnerability:

l Poor error handling: empty catch block—Ignoring an exception can cause the program to overlook
unexpected states and conditions.

The scenario highlights the following analysis and rules concepts:

l Catch block construct object
l Structural rule

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 47 of 157

Source Code

The following code builds Hibernate sessions that the application uses in subsequent database
operations. The ConnectionFactory class constructor contains code that might throw software
exceptions.

private ConnectionFactory() {
try {

String pFile = System.getProperty("ConnectionFactory.pfile");
if (pFile != null) {

java.util.Properties props = new java.util.Properties();
props.load(new java.io.FileInputStream(pFile));
}

}
catch (Exception e) {

//TODO: fill in this code
}
...

In this code, the catch block is empty. The application cannot maintain an accurate log of any security
events that might occur.

Rules

To identify the empty catch block shown in the previous code example, the Structural Analyzer
should examine the empty property of each CatchBlock construct object. This boolean property
indicates that the corresponding catch block does not contain any code.

The following rule identifies empty catch blocks:

<StructuralRule formatVersion="23.1" language="java">
<RuleID>D693090B-3F8C-48BD-BCDE-C6DCA2266710</RuleID>
<VulnCategory>Poor Error Handling</VulnCategory>
<VulnSubcategory>Empty Catch Block</VulnSubcategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<Predicate><![CDATA[

CatchBlock: empty
]]></Predicate>

</StructuralRule>

With this structural rule, the Structural Analyzer reports any empty catch blocks in the application.

Custom Rules Guide
Chapter 3: Structural Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 48 of 157

Chapter 4: Dataflow Analyzer Rules
This section contains the following topics:

Dataflow Analyzer and Custom Rules 49

Dataflow Analyzer and Custom Rules Concepts 50

XML Representation of Dataflow Analyzer Rules 55

Custom Dataflow Analyzer Rule Scenarios 67

Dataflow Analyzer and Custom Rules
The Fortify Static Code Analyzer Dataflow Analyzer finds security issues that involve tainted data
(user-controlled input) that is put to potentially dangerous use. The Dataflow Analyzer uses
interprocedural taint propagation analysis to detect the flow of data between a source (site of user
input) and a sink (dangerous function call or operation).

This analysis enables Fortify Static Code Analyzer to precisely identify many different types of
security problems. A common example is a SQL injection. In a SQL injection, the program eventually
uses tainted data acquired from a taint source (such as an HTTP request parameter) to construct and
invoke a SQL query (a taint sink). When the analyzer detects this, the Dataflow Analyzer reports a
SQL injection issue.

Because the Dataflow Analyzer performs interprocedural analysis, it can track tainted data across
method calls and through global variables in the program.

The Dataflow Analyzer operates on a model of the program. Fortify Static Code Analyzer constructs
this model from program source code and rules. The program source code provides the base layer for
the model. This layer describes the behavior of methods, the relationships between different methods,
and the relationship between methods and global variables. Fortify Static Code Analyzer then
augments the model with rules. These rules describe the points in the program that act as taint
sources and sinks. They also describe program points that can manipulate or transfer tainted data.

Note: If the model is incomplete due to necessary source code not translated into the model, or if
the rules required to accurately identify the weakness are not provided, then Fortify Static Code
Analyzer can potentially have false negatives in its analysis (unreported weaknesses that truly
exist).

The following example of a simple program illustrates a command-injection vulnerability:

function run() {
 readFromNetwork(buffer);
 command = concatenate("/usr/bin/", buffer);
 execute(command);
}

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 49 of 157

In this example, readFromNetwork(), concatenate(), and execute() are API calls to a standard
library linked to the program. The call readFromNetwork() reads the tainted input into the buffer.
The run() function then concatenates the buffer with a string literal to form command, passes
command to the execute() function, which executes a new process specified by the command string.

By building a model from the source code, the Dataflow Analyzer can understand that run() calls
three external functions and that there is a dataflow relationship among those calls through local
variables.

Because the source code for those functions is not part of the program, the model is incomplete
without a set of rules that describe the relevant characteristics of those functions. Without any
knowledge of the external functions, the Dataflow Analyzer cannot determine how tainted data enters
and moves through the program.

For this example, the Dataflow Analyzer can detect the vulnerability with the following dataflow rules
and taint characterization rules:

l A DataflowSourceRule or Characterization TaintSource rule for readFromNetwork()
l A DataflowPassthroughRule or Characterization TaintTransfer rule for concatenate()
l A DataflowSinkRule or Characterization TaintSink rule for execute()

Dataflow Analyzer and Custom Rules Concepts
This section provides information on dataflow core concepts. These concepts coincide with rules that
you can write to instruct Fortify Static Code Analyzer on how Dataflow Analyzer models the code.
This section also provides more advanced concepts that illustrate how the Dataflow Analyzer
performs in a given situation.

This section contains the following topics:

Taint Source 51

Taint Write 51

Taint Entrypoint 51

Taint Sink 52

Taint Passthrough / Transfer 52

Taint Cleanse 52

Taint Flags 53

Taint Path 54

Validation Constructs 54

Types of Dataflow Analyzer Rules 55

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 50 of 157

Taint Source

Tainted data enters a program through a program point called a taint source. Taint sources are
function and method calls, variable and field accesses, and other expressions explicitly invoked from
your source code that introduce tainted input. Common examples include:

l A function that reads data from network sources such as an HTTP request
l A function that reads data from untrusted data sources (for example, a database to which other

programs write)
l Access to a field that stores input collected from a user

Taint Write

Taint write is a source of taint introduced with a write operation as opposed to taint source that
introduces tainted input with a read operation. Common examples of taint write include writing to a
variable that is used as:

l An argument to a function call
l An instance object of a function call
l A field access
l A variable access
l An array access

Taint Entrypoint

A taint entrypoint is a special type of taint source that describes a function invoked with tainted input
from the environment, framework, or the arguments passed. Some programming frameworks invoke a
function in an application without any explicit call in the user code. For example, the main() function,
common in most modern programming languages, acts as the entrypoint during execution. The
operating system invokes the main() function executables written in C or C++ at runtime. The Java
Runtime Environment invokes the main() function in Java applications. The JVM running in the web
browser invokes the init() and destroy() functions in Java applets when a page that contains the
applet is first visited and when the browser is closed, respectively.

Common examples include:

l The main function of a program that is called with arguments specified on the command line
l A function in a web application framework that is called directly by the framework with an input

parameter
l Parameters to a function with an annotation that indicates that the underlying framework invokes

the function with an input parameter

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 51 of 157

Taint Sink

Taint sinks are program points to which tainted data must not flow. When the Dataflow Analyzer
detects a path through which tainted data can flow from source to sink, it reports an issue. A taint sink
rule can contain a conditional expression that, by examining taint flags, limits which paths that end at
a sink are reported.

Common examples include:

l A function that takes a SQL string and executes a query against a database connection
l A function that takes a string and executes the command described by the string
l An assignment to a variable that is automatically written to a web page by an underlying

framework

Taint Passthrough / Transfer

The Dataflow Analyzer automatically tracks data and propagates taint (passthrough behavior) for
functions defined in the source code. You must model externally defined functions (source code not
available for translation, such as in the JDK library) with passthrough behavior using a rule.

For example, the default Fortify Secure Coding Rulepacks contain a rule that describes the
passthrough behavior of StringBuilder.append().

A passthrough or taint transfer rule might add or remove taint flags from the tainted data.

Taint Cleanse

A taint cleanse is a point at which taint is removed or modified. Typically, this is a validation function.

There are two types of taint cleanse points:

l Complete cleanse—Rule that describes a taint cleanse that does not specify taint flags to add or
remove. The Dataflow Analyzer stops taint propagation completely at this point.

l Partial cleanse —Rule that specifies to add or remove taint flags. In this instance, the data is still
tainted, but the taint flag set changes.

Cleanse rules are always the last set of rules applied during the scan. If a cleanse rule matches a
function call, field, variable, or other code construct, the cleanse rule applies on top of the taint path. It
is applied after any passthrough rules that match the same code construct.

It is often possible to describe a code construct in terms of either a passthrough or a cleanse rule. See
"Validation Constructs" on page 54 for a description of the differences between passthrough rules
and cleanse rules.

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 52 of 157

Taint Flags

A taint flag is an attribute of tainted data that enables the Dataflow Analyzer to discriminate among
different types of taint. This is important because it enables the Dataflow Analyzer to accurately
identify issues.

For example, the input from both HTTP parameters and local configuration files of a web application
might be tainted. The attack vectors in each instance are substantially different. An attacker can
easily manipulate HTTP parameters. Manipulating configuration files on the system is much more
difficult.

Consider a function that checks input for SQL metacharacters. After tainted data passes through this
function, it is safe to use in a taint sink for SQL injection. However, you cannot consider the data
untainted. It is still dangerous to use in other contexts, such as a taint sink for command injection. The
use of taint flags in rules enables the Dataflow Analyzer to determine whether the tainted data is safe
in a specific context.

Each taint path through the program carries a set of taint flags. The Dataflow Analyzer can add or
remove taint flags that originated at the taint source point as taint passes through passthrough and
cleanse points in the program. A taint sink can check for the presence or absence of taint flags that
determine whether the Dataflow Analyzer reports a path from source to sink.

Taint Flag Types

Fortify Static Code Analyzer provides three types of taint flags. These taint flag types help to simplify
writing conditional expressions for taint sinks.

l General—This is the default taint flag type. These usually indicate a source of untrusted data and
are used for tracking data that comes into the application (such as SQL injection, cross-site
scripting, and so on).

l Neutral—These taint flags represent “informational” content. Neutral taint flags are most often
used to note that a specific vulnerability category has been validated. Neutral taint flags are useful
in filtering out false positives. These are usually used to describe properties of data.

l Specific—You create specific taint flags by including a declaration that describes the category of
taint flag in the Rulepack. These are usually used for tracking data that leaves the application (such
as system information leak, privacy violation, and so on).

For descriptions of the taint flags included with the Fortify Secure Coding Rulepacks, see "Taint Flag
Reference" on page 134.

Taint flag typing provides a method to introduce new types of taint into the system without
producing unexpected results. Specific taint flags enable a rule writer to create a pairing of source and
sink rules. In such a pairing, taint from the paired source rule does not interact with other sinks.
Likewise, any taint from other sources in the program cannot interact with the paired sink.

For example, consider a program that uses the APIs getSecret() and shareData(). In this
example, getSecret() returns secret data, the output of which should never get passed to
shareData(). You can write a rule that prevents this by describing getSecret() as a taint source
and shareData() as a taint sink.

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 53 of 157

This works fine if these are the only rules used to analyze the program. However, if you use the
default Secure Coding Rulepacks to scan the program, Fortify Static Code Analyzer might report
unintended issues. For example, Fortify Static Code Analyzer might report input from HTTP
parameters reaching shareData(), or input from getSecret() being used in a SQL query, even
though these usages are safe.

For these rules to work more precisely, you can introduce a new taint flag (SECRET) to the source and
sink rules. The source rule would add the SECRET taint flag, and the sink rule would check for the
presence of the SECRET taint flag.

This solves half of the problem; the sink at shareData() only reports input from getSecret() and
not from other sources. However, input from getSecret()might unintentionally trigger the
reporting of issues at other sinks, because those sinks do not explicitly check against the absence of
the new SECRET taint flag. This example demonstrates the benefit of specific taint flags. By declaring
the SECRET taint flag as specific, taint from the getSecret() source is prevented from interacting
with existing sinks in unintended ways. Sinks that do not explicitly check for the specific taint flag
SECRET ignore the taint from getSecret().

Taint Flag Behavior

It can be challenging to understand the exact behavior of sinks in the presence of different types of
taint. For any sink that does not explicitly check for the presence or absence of any specific taint flag
in the taint flag set, Fortify Static Code Analyzer automatically adds a check to ensure that the taint
flag set is not specific. A taint flag set is specific if it contains one or more specific taint flags and does
not contain any general taint flags.

Taint Path

The Dataflow Analyzer reports a vulnerability when it finds one or more taint paths between a source
and a sink in the application.

A taint path contains a sequence of method calls, stores (assignment variables or fields), and loads
(reads from variables or fields). It denotes a path along which tainted data propagates from a taint
source point to a taint sink point. In fact, because a program can contain loops or recursion, there can
be an infinite number of paths. The Dataflow Analyzer cannot consider all taint paths from a source to
a sink due to performance implications. However, it does consider every path that has a unique set of
taint flags applied to it. Some of the taint flags indicate that something is validated, which means that
the Dataflow Analyzer does not report an issue on that path. If another path exists on which the data
is not validated, Dataflow Analyzer reports an issue.

Validation Constructs

One of the most basic rule-writing tasks is to write rules for validation constructs such as validation
functions. You can do this by either writing a passthrough or cleanse rule. The rule that is appropriate
depends on the circumstances.

In cases where the function completely validates the input for all cases, a complete cleanse rule (which
removes all taint) is appropriate. In most cases, it is preferable to add a taint flag to the taint path to
indicate that a certain type of validation was performed.

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 54 of 157

For examples of validation construct rules, see "Validation Construct Examples" on page 85.

Types of Dataflow Analyzer Rules

Dataflow analysis requires the definition of source and sink rules to mark the endpoints of a dataflow
path tracking tainted data. Understanding the context of the various operations that occur along the
dataflow path can lead to more precise rules and can reduce the number of false positives reported
during analysis.

You can only use dataflow rules to define taint sources, sinks, and passthroughs around function calls.
Taint characterization rules provide a way to specify the characteristics of the execution context of
the various functions in the dataflow. You can also use taint characterization rules to track tainted
data through arbitrary expressions. This creates more concise constraints for the various nodes in a
dataflow trace. Taint characterization rules are considered a superset of dataflow rules. The following
table summarizes the types of rules you can use to represent various Dataflow Analyzer rule
concepts.

Concept Dataflow Rule Taint Characterization Rule

Taint Source DataflowSourceRule TaintSource

TaintWrite

Taint Entrypoint DataflowEntryPointRule TaintEntrypoint

Taint Passthrough DataflowPassthroughRule TaintTransfer

Taint Sink DataflowSinkRule TaintSink

Taint Cleanse DataflowCleanseRule TaintCleanse

XML Representation of Dataflow Analyzer Rules
The following example shows the general XML structure of a dataflow rule:

<DataflowXYZRule formatVersion="23.1" language="...">
<RuleID>...</RuleID>
<MetaInfo>...</MetaInfo> <!-- DataflowSinkRule only -->
<VulnKingdom>...</VulnKingdom> <!-- DataflowSinkRule only -->
<VulnCategory>...</VulnCategory> <!-- DataflowSinkRule only -->
<VulnSubCategory>...</VulnSubcategory> <!-- DataflowSinkRule only -->
<Description>...</Description> <!-- DataflowSinkRule only -->
<FunctionIdentifier>

...

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 55 of 157

</FunctionIdentifier>
<InArguments>...</InArguments> <!-- Optional -->
<OutArguments>...</OutArguments> <!-- Optional -->
<TaintFlags>...</TaintFlags> <!-- Optional -->

</DataflowXYZRule>

The <InArguments>, <OutArguments>, and <TaintFlags> elements are described in the following
relevant dataflow rule sections.

Note: In the DataflowSinkRule, a <Sink> element encloses the <InArguments> element
(<Sink><InArguments>...</InArguments</></Sink>).

The following example shows the general XML structure of a taint characterization rule:

<CharacterizationRule formatVersion="23.1" language="...">
<RuleID>...</RuleID>
<MetaInfo>...</MetaInfo> <!-- TaintSink only -->
<VulnKingdom>...</VulnKingdom> <!-- TaintSink only -->
<VulnCategory>...</VulnCategory> <!-- TaintSink only -->
<VulnSubCategory>...</VulnSubcategory> <!-- TaintSink only -->
<Description>...</Description> <!-- TaintSink only -->
<StructuralMatch><[CDATA[
...

]]></StructuralMatch>
<Definition><![CDATA[
...

]]><Definition>
</CharacterizationRule>

The following table describes the XML elements introduced in the characterization rule shown in the
previous example.

Element Description

StructuralMatch Specifies what the rule should match in the code using one or more structural

queries. This is the same as the <Predicate> element in structural rules. For
more information about the predicate language, see "Structural Rules
Language Reference" on page 143.

Enclose the contents of this element in CDATA section to avoid the need to
escape XML special characters.

Definition Specifies the rule type (TaintSource, TaintWrite, TaintEntrypoint,
TaintSink, TaintTransfer, or TaintCleanse), input/output parameters

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 56 of 157

Element Description

for the taint, addition of taint, and taint flag constraints.

Note: You can have multiple taint characterization rule properties in this
element. To identify the characterization rule property that generated the
issue, the index (zero-based) of the taint characterization rule property is
appended to the end of the ruleID shown in the results.

Enclose the contents of this element in a CDATA section to avoid the need to
escape XML special characters.

This section describes the XML for the following Dataflow Analyzer rule concepts:

Source Rules 57

Sink Rules 60

Passthrough Rules 62

Entrypoint Rules 64

Cleanse Rules 65

Source Rules

Use Dataflow Analyzer source rules to identify points at which tainted data enters a program.

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 57 of 157

The following example shows a dataflow source rule that identifies the Java method
ServletRequest.getParameter() as a source of tainted data:

<DataflowSourceRule formatVersion="23.1" language="java">
<RuleID>82EBC382-1341-4A81-9FA0-3A9AF3D3EFDA</RuleID>
<FunctionIdentifier>

<NamespaceName>
<Pattern>javax\.servlet</Pattern>

</NamespaceName>
<ClassName>

<Value>ServletRequest</Value>
</ClassName>
<FunctionName>

<Value>getParameter</Value>
</FunctionName>
<ApplyTo implements="true" overrides="true" extends="true"/>

</FunctionIdentifier>
<OutArguments>return,this</OutArguments>
<TaintFlags>+WEB,+XSS</TaintFlags>

</DataflowSourceRule>

The following table describes the XML elements introduced in the dataflow source rule shown in the
previous example.

Element Description

OutArguments Determines the method parameters that introduce taint into the application.

Specify parameters as a comma-delimited list of either the keywords: return,
this, or globals, or the zero-based index of the target parameter.

TaintFlags (Optional) Specifies the taint flags to associate with taint introduced by the
method that the rule matches.

Specify taint flags as a comma-delimited list. Each taint flag must include a plus

(+) or minus (-) prefix to indicate whether to add or remove it from the taint
path. Only the plus prefix is valid in source and entrypoint rules.

You can also write the previous dataflow source rule as two taint characterization rules:

l TaintSource to taint the return value of a method call
l TaintWrite to taint the request object on which the method is called

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 58 of 157

The following example shows a TaintSource characterization rule that is equivalent to tainting the
return value in the <OutArgument> of the previous <DataflowSourceRule>:

<CharacterizationRule formatVersion="23.1" language="java">
<RuleID>75A7A75E-BBB7-44CB-B12C-CE13D0DE3DC8</RuleID>
<StructuralMatch><![CDATA[

FunctionCall call: call.function is
[Function f: f.name == "getParameter" and
f.enclosingClass.supers contains
[Class c: c.name == "javax.servlet.ServletRequest"]]

]]></StructuralMatch>
<Definition><![CDATA[

TaintSource(call, {+XSS +WEB})
]]></Definition>

</CharacterizationRule>

The previous taint characterization rule looks for a call to a method getParameter() defined in a
class, one of the super-classes of which is the javax.servlet.ServletRequest class.

Note: The f.enclosingClassses.supers contains [...] clause is equivalent to setting
the <ApplyTo> element attributes in the <DataflowSourceRule> to true.

The <Definition> element specifies that the rule represents a taint source that occurs on a read
operation. The following table describes the parameters of the TaintSource characterization rule
type: TaintSource(Expression, {TaintFlags}).

Parameter Description

Expression Specifies an expression and optional access path (for example, .foo.bar) to treat
as tainted. If the expression is a function call, the effect is that the return value is
tainted.

TaintFlags (Optional) Specifies the taint flags to associate with taint introduced by the
construct the rule matches.

Specify taint flags as a space-delimited list. Each taint flag must include a plus (+)
prefix to indicate that it is added to the taint path.

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 59 of 157

The following example shows the accompanying TaintWrite characterization rule that is equivalent to
tainting this in the <OutArgument> of the previous <DataflowSourceRule>:

<CharacterizationRule formatVersion="23.1" language="java">
<RuleID>B27373A5-1403-4986-8221-112CE21D7A5F</RuleID>
<StructuralMatch><![CDATA[

FunctionCall call: call.function is
[Function f: f.name == "getParameter" and
f.enclosingClass.supers contains
[Class c: c.name == "javax.servlet.ServletRequest"]]

and call.instance is [Expression request:]
]]></StructuralMatch>
<Definition><![CDATA[

TaintWrite(request, {+XSS +WEB})
]]></Definition>

</CharacterizationRule>

The previous taint characterization rule looks for a call to a method getParameter() defined in a
class, one of the super-classes of which is javax.servlet.ServletRequest class. The
<Definition> element specifies that the rule represents a taint source that occurs on a write
operation. The following table describes parameters of the TaintWrite characterization rule type:
TaintWrite(Expression, {TaintFlags}).

Parameter Description

Expression Specifies an expression and optional access path (for example, .foo.bar) that is
treated as tainted.

TaintFlags (Optional) Specifies the taint flags to associate with taint introduced by the
construct the rule matches.

Specify taint flags as a space-delimited list. Each flag must include a plus (+) prefix
to indicate that it is added to the taint path.

Sink Rules

Use Dataflow Analyzer sink rules to identify points in a program that tainted data must not reach.

The following example shows a dataflow sink rule that indicates taint must not reach the
Statement.executeQuery()method:

<DataflowSinkRule formatVersion="23.1" language="java">
<RuleID>CCC3523A-3E34-4890-8F7D-23F16CB3C4339</RuleID>
<VulnCategory>SQL Injection</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 60 of 157

<Description/>
<Sink>

<InArguments>0</InArguments>
</Sink>
<FunctionIdentifier>

<NamespaceName>
<Value>java.sql</Value>

</NamespaceName>
<ClassName>

<Value>Statement</Value>
</ClassName>
<FunctionName>

<Value>executeQuery</Value>
</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
</DataflowSinkRule>

The following table describes the XML element introduced in the previous dataflow sink rule example.

Element Description

InArguments Specifies the parameters of the method that must not receive taint. If taint
reaches any of these parameters, Fortify Static Code Analyzer reports an issue.

Specify parameters as a comma-delimited list of either the keywords: return,
this, or globals, or the zero-based index of the target parameter.

You can also write the previous dataflow sink rule as a taint characterization rule. The following
example shows a TaintSink characterization rule:

<CharacterizationRule formatVersion="23.1" language="java">
<RuleID>0434D772-00B8-44AA-A23F-04C9BD7115D3</RuleID>
<VulnCategory>SQL Injection</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<StructuralMatch><![CDATA[

FunctionCall call: call.function is
[Function f: f.name == "executeQuery" and f.enclosingClass.supers

contains
[Class c: c.name == "java.sql.Statement"]]

and call.arguments[0] is [Expression inArgument:]
]]></StructuralMatch>

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 61 of 157

<Definition><![CDATA[
TaintSink(inArgument, [])

]]></Definition>
</CharacterizationRule>

The previous taint characterization rule looks for a call to a method executeQuery() defined in a
class, one of the super-classes of which is the java.sql.Statement class, and specifies argument
zero as a sink. The <Definition> element specifies that the rule represents a taint sink. The
following table describes the parameters of the TaintSink characterization rule type: TaintSink
(Sink, TaintFlags).

Parameter Description

Sink Specifies an expression that is considered a sink for tainted data. This creates an
issue if taint that satisfies the condition expression reaches the expression.

TaintFlags (Optional) Specifies a conditional taint flag expression. Specify taint flags with the

logical &&, ||, and ! operators, for example (WEB || NETWORK) && !FILE. To
specify that the rule matches regardless of the taint involved, use empty braces

({}).

Passthrough Rules

Use Dataflow Analyzer passthrough rules to describe how functions and methods propagate taint
from input to output.

The following example shows a dataflow passthrough rule that indicates that taint on the string on
which the trim()method is called is also returned from the method:

<DataflowPassthroughRule formatVersion="23.1" language="java">
<RuleID>8A1E8BA1-6C03-4F77-B648-75C3CF3C28CB</RuleID>
<FunctionIdentifier>

<NamespaceName>
<Value>java.lang</Value>

</NamespaceName>
<ClassName>

<Value>String</Value>
</ClassName>
<FunctionName>

<Value>trim</Value>
</FunctionName>

</FunctionIdentifier>
<InArguments>this</InArguments>
<OutArguments>return</OutArguments>

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 62 of 157

<DataflowPassthroughRule>

The dataflow passthrough rule in the previous example combines the concepts of <InArguments>
and <OutArguments> to map taint that enters the method on one parameter to taint exiting the
method on another parameter. If a passthrough rule includes taint flags, which the previous example
does not, those taint flags are added (flags prepended with a plus +) or removed (flags prepended
with a minus -) from the parameter specified by the <OutArguments> element.

You can also write the previous dataflow passthrough rule as a taint characterization rule. The
following example shows a TaintTransfer characterization rule:

<CharacterizationRule formatVersion="23.1" language="java">
<RuleID>C30E2CFB-5133-48FF-86A5-854E4D282631</RuleID>
<StructuralMatch><![CDATA[

FunctionCall call: call.function is
[Function f: f.name == "trim" and f.enclosingClass.supers contains

[Class c: c.name == "java.lang.String"]]
and call.instance is [Expression inArgument:]

]]></StructuralMatch>
<Definition><![CDATA[

TaintTransfer(inArgument, call, {})
]]></Definition>

</CharacterizationRule>

The previous taint characterization rule looks for a call to a method trim() defined in a class, one of
the super-classes of which is the java.lang.String class. This rule also specifies that taint needs to
propagate from the object the method is called on to the return value. The <Definition> element
specifies that the rule represents a passthrough. The following table describes parameters of the
TaintTransfer characterization rule type: TaintTransfer(In, Out, {TaintFlags}).

Parameter Description

In Specifies an expression and optional access path (for example, inArgument.foo)
that contains incoming taint.

Out Specifies an expression and optional access path (for example, .foo.bar) that
receives outgoing taint.

TaintFlags (Optional) Specifies the taint flags to associate with taint introduced by the
construct the rule matches. Specify the taint flags as a space-delimited list. Each

flag must include a plus (+) or minus (-) prefix to indicate if it is added to or
removed from the taint path. If you are not adding or removing taint flags, include

empty braces ({}) or leave it out.

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 63 of 157

Entrypoint Rules

Use Dataflow Analyzer entrypoint rules to describe program points that introduce tainted data to a
program. Entrypoint rules do this by describing the functions and methods that the program can
invoke (either externally or through an internal framework or other mechanism for which the source
code is not included in the analysis).

The following example shows a dataflow entrypoint rule that indicates that the array of strings
passed as the first parameter to the Java main()method is tainted:

<DataflowEntryPointRule formatVersion="23.1" language="java">
<RuleID>64FDA988-4770-498E-9709-4497CCDA4E48</RuleID>

<TaintFlags>+ARGS</TaintFlags>
<FunctionIdentifier>

<NamespaceName>
<Pattern>.*</Pattern>

</NamespaceName>
<ClassName>

<Pattern>.*</Pattern>
</ClassName>
<FunctionName>

<Value>main</Value>
</FunctionName>
<Parameters>

<ParamType>java.lang.String[]</ParamType>
</Parameters>
<ApplyTo implements="true" overrides="true" extends="true"/>
<Modifiers>

<Modifier>static</Modifier>
</Modifiers>

</FunctionIdentifier>
<InArguments>0</InArguments>

</DataflowEntryPointRule>

The previous dataflow entrypoint rule example uses the <InArguments> element to define the
parameters to consider tainted when the body of the specified method is analyzed.

You can also write the previous dataflow entrypoint rule as a taint characterization rule. The following
example shows a TaintEntrypoint characterization rule:

<CharacterizationRule formatVersion="23.1" language="java">
<RuleID>278379D6-7CA3-4195-8857-7E5435B13053</RuleID>
<StructuralMatch><![CDATA[

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 64 of 157

Function f: f.static and f.name == "main" and f.parameters.length == 1
and f.parameterTypes[0] == T"java.lang.String[]"
and f.parameters[0] is [Expression inArgument:]

]]></StructuralMatch>
<Definition><![CDATA[

TaintEntrypoint(inArgument, {+ARGS})
]]></Definition>

</CharacterizationRule>

The previous taint characterization rule looks for a declaration of a static function main() that takes
a java.lang.String array as a parameter. The <Definition> element specifies that the rule
represents a taint entrypoint. The following table describes parameters of the TaintEntrypoint
characterization rule type: TaintEntrypoint(In, {TaintFlags}).

Parameter Description

In Specifies an expression and optional access path (for example, inArgument.foo)
that is treated as tainted.

TaintFlags (Optional) Specifies the taint flags to associate with taint introduced by the
construct the rule matches. Specify the taint flags as a space-delimited list. Each

flag must include a plus (+) prefix to indicate it is added to the taint path.

Cleanse Rules

Use Dataflow Analyzer cleanse rules to describe validation logic and other actions that render tainted
data either partially or completely cleansed. You can add or remove specified taint in a cleanse rule.

The following example shows a dataflow cleanse rule that demonstrates how the Map.clear()
method cleanses the map:

<DataflowCleanseRule formatVersion="23.1" language="java">
<RuleID>878BFCE2-6333-4AA2-8E3F-211B477FF409</RuleID>
<FunctionIdentifier>

<NamespaceName>
<Value>java.util</Value>

</NamespaceName>
<ClassName>

<Value>Map</Value>
</ClassName>
<FunctionName>

<Value>clear</Value>
</FunctionName>
<ApplyTo implements="true" overrides="true" extends="true"/>

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 65 of 157

</FunctionIdentifier>
<OutArguments>this</OutArguments>

</DataflowCleanseRule>

The dataflow cleanse rule in the previous example uses the <OutArguments> element to specify that
the parameters should be considered cleansed after a call to the specified method. If a cleanse rule
includes taint flags, which the previous example does not, then the specified taint flags are either
added (flags prepended with a plus +) or removed (flags prepended with a minus -) from the
parameter specified by the <OutArguments> element.

You can also write the previous dataflow cleanse rule as a taint characterization rule. The following
example shows a TaintCleanse characterization rule:

<CharacterizationRule formatVersion="23.1" language="java">
<RuleID>C56AE490-963B-45E8-86D1-FF1DEE474639</RuleID>
<StructuralMatch><![CDATA[

FunctionCall call: call.function is
[Function f: f.name == "clear" and f.enclosingClass.supers contains

[Class c: c.name == "java.util.Map"]]
and call.instance is [Expression outArgument:]

]]></StructuralMatch>
<Definition><![CDATA[

TaintCleanse(outArgument, {})
]]></Definition>

</CharacterizationRule>

The previous taint characterization rule looks for a call to a method clear() defined in a class, one of
the super-classes of which is java.util.Map class, and specifies that taint is completely removed
from the map on which the method is called. The <Definition> element specifies that the rule
represents a cleanse. The following table describes parameters of the TaintCleanse characterization
rule type: TaintCleanse(Expr, {TaintFlags}).

Parameter Description

Expr Specifies an expression and optional access path (for example, outArgument.foo)
that is cleansed of all taints or a set of taints when taint flags are removed, or
receives taints when taint flags are added.

TaintFlags (Optional) Specifies the taint flags to associate with taint introduced by the
construct the rule matches. Specify the taint flags as a space-delimited list. Each

flag must include a plus (+) or minus (-) prefix to indicate if it is added to or
removed from the taint path. To remove all taint, omit the list of taint flags (specify

empty braces {}).

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 66 of 157

Custom Dataflow Analyzer Rule Scenarios
This section provides examples of custom dataflow and taint characterization rules. Use these
examples as a basis to write custom rules. Match your requirement with one of the examples, and
tailor the rules to suit your software.

This section contains the following topics:

SQL Injection and Access Control 67

Persistent Cross-Site Scripting 72

Path Manipulation 78

Command Injection 81

Validation Construct Examples 85

SQL Injection and Access Control

This scenario highlights the rules that are necessary for the Dataflow Analyzer to detect access
control vulnerabilities in the application. Because the analyzer detects SQL injection vulnerabilities
with similar rules, this scenario also covers SQL injection vulnerabilities and corresponding detection
rules.

The scenario describes the source code that includes an example of a SQL injection vulnerability.
Then, the scenario demonstrates how the Dataflow Analyzer uses source, sink, and passthrough rules
to identify this type of vulnerability.

This scenario highlights the following vulnerabilities:

l Access control—Without proper access control, execution of a SQL statement that contains a user-
controlled primary key can enable an attacker to view unauthorized records.

l SQL Injection—Construction of a dynamic SQL statement with user input can enable an attacker to
modify the statement intent or to execute arbitrary SQL commands.

This scenario highlights the following analysis and rule concepts:

l Conditionals
l Full cleanse function
l Neutral taint
l Paired sinks
l Partial cleanse functions
l Passthrough

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 67 of 157

Source Code

The application contains an access control vulnerability in its transaction service. The application
enables users to provide their account identifier and retrieve their account details. An attacker can
type any account identifier in the transaction service request, which causes the server to respond with
the account details of the user.

The following RWO application example includes the JSP page that shows transaction details and has
an access control vulnerability:

<% String accountNumber = request.getParameter("acctno");%>
...
<%
if ((accountNumber != null) && (accountNumber.length() > 0)) {

Long account = Long.valueOf(accountNumber);
List transactions = TransactionService.getTransactions(account);
PrintWriter outputWriter = response.getWriter();
outputWriter.println("<h1>Transactions reported from database

for account <i>"+accountNumber+"</i></h1>");
try {

...
}

%>

The JSP calls TransactionService.getTransactions() with the account number as an
argument to retrieve the account details. The transaction service queries the database for the
associated transactions.

The following example shows how this method retrieves the accounts:

public static List getTransactions(Long acctno) throws Exception {
Session session = ConnectionFactory.getInstance().getSession();
String queryStr = "from Transaction transaction where

transaction.acctno ='" + acctno + "'ORDER BY date DESC";
if (ServletActionContext.getServletContext() != null) {

ServletActionContext.getServletContext().log(queryStr);
}
Query query = session.createQuery(queryStr);
List transactions = query.list();
session.close();

return transactions;
}

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 68 of 157

The method generates a dynamic SQL statement using the account number read from a request
parameter. The code assumes that the account number only belongs to the current user. The code
does not verify that the user has authorization to view the returned data.

This vulnerability type is closely related to the SQL injection vulnerability type. A SQL injection
vulnerability exists when code appends an untrusted string, which can contain arbitrary characters.
An attacker can input additional SQL code and change the entire meaning of the query.

The previous example does not contain a SQL injection vulnerability because the attack vector is of
type Long and can only contain digits.

The following example shows an equivalent SQL injection vulnerability:

public static List getTransactions(String acctno) throws Exception {
Session session = ConnectionFactory.getInstance().getSession();
String queryStr = "from Transaction transaction where

transaction.acctno ='" + acctno + "' ORDER BY date DESC";
if (ServletActionContext.getServletContext() != null)

ServletActionContext.getServletContext().log(queryStr);
Query query = session.createQuery(queryStr);
List transactions = query.list();
session.close();
return transactions;

}

Rules

In the first JSP page example, untrusted data enters the application through a method call to
getParameter().

The following example shows a dataflow source rule that models that call as a source of tainted data:

<DataflowSourceRule formatVersion="23.1" language="java">
<RuleID>120E80B3-7EA2-4A18-82F2-0F7E53E97480</RuleID>
<FunctionIdentifier>

<NamespaceName>
<Pattern>javax\.servlet</Pattern>

</NamespaceName>
<ClassName>

<Value>ServletRequest</Value>
</ClassName>
<FunctionName>

<Value>getParameter</Value>
</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
<OutArguments>return</OutArguments>

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 69 of 157

</DataflowSourceRule>

The dataflow source rule in the previous example matches the method
ServletRequest.getParameter(). The <OutArguments> element indicates that the return value
of the method is tainted. The lack of a <TaintFlags> element indicates that this is a general source
of taint, which does not assign any taint flags.

The first JSP page example processes the incoming account number by converting it from a string
type to a numeric type.

The following example shows the dataflow passthrough rule that enables the Dataflow Analyzer to
follow taint from the accountNumber variable to the account variable:

<DataflowPassthroughRule formatVersion="23.1" language="java">
<RuleID>73371DA9-10AD-4D13-823D-4BD0C9F2104F</RuleID>
<TaintFlags>-XSS,+NUMBER</TaintFlags>
<FunctionIdentifier>

<NamespaceName>
<Pattern>java\.lang</Pattern>

</NamespaceName>
<ClassName>

<Value>Long</Value>
</ClassName>
<FunctionName>

<Value>valueOf</Value>
</FunctionName>

</FunctionIdentifier>
<InArguments>0</InArguments>
<OutArguments>return</OutArguments>

</DataflowPassthroughRule>

The passthrough rule targets the Long.valueOf()method. The <InArguments> and
<OutArguments> elements specify how tainted data flows through the method. When code calls the
method with a tainted parameter, Fortify Static Code Analyzer considers that the return value from
the call is tainted. The rule adds a specific taint flag NUMBER to the returned value to indicate the
object is strictly numeric in nature. The rule removes any XSS taint flag from the returned value
because it can no longer be used to conduct an XSS attack.

Eventually, the JSP page example executes the TransactionService.getTransactions()
method, which then executes the Session.createQuery()method. The following example shows
the sink rule that detects the access control vulnerability.

It checks that the VALIDATED_ACCESS_CONTROL_DATABASE taint flag is not present. If a validation
function is later introduced to the flow of data in the source code, you can write a rule for the
validation function that adds the VALIDATED_ACCESS_CONTROL_DATABASE taint flag. This ensures
that Fortify Static Code Analyzer does not report a vulnerability for paths that flow through that
function.

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 70 of 157

<DataflowSinkRule formatVersion="23.1" language="java">
<RuleID>2B8502DE-E54E-4C59-AFC6-B6E3BCA67B3B</RuleID>
<VulnCategory>Access Control</VulnCategory>
<VulnSubcategory>Database</VulnSubcategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<Sink>

<InArguments>0</InArguments>
<Conditional>

<And>
<TaintFlagSet taintFlag="NUMBER"/>
<Not>

<TaintFlagSet taintFlag="VALIDATED_ACCESS_CONTROL_DATABASE"/>
</Not>

</And>
</Conditional>

</Sink>
<FunctionIdentifier>

<NamespaceName>
<Pattern>net\.sf\.hibernate</Pattern>

</NamespaceName>
<ClassName>

<Value>Session</Value>
</ClassName>
<FunctionName>

<Value>createQuery</Value>
</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
</DataflowSinkRule>

Often, an access control sink rule is paired with a SQL injection rule. The method
Session.createQuery() contains an access control vulnerability. You can convert an access
control sink rule to a SQL injection sink rule.

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 71 of 157

The following example shows the equivalent SQL injection sink rule to the previous access control
sink rule:

<DataflowSinkRule formatVersion="23.1" language="java">
<RuleID>AE637178-A9D2-4BE6-A7B2-EEEA293B506F</RuleID>
<VulnCategory>SQL Injection</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<Sink>

<InArguments>0</InArguments>
<Conditional>

<And>
<Not>

<TaintFlagSet taintFlag="NUMBER"/>
</Not>
<Not>

<TaintFlagSet taintFlag="VALIDATED_SQL_INJECTION"/>
</Not>

</And>
</Conditional>

</Sink>
<FunctionIdentifier>

<NamespaceName>
<Value>net.sf.hibernate</Value>

</NamespaceName>
<ClassName>

<Value>Session</Value>
</ClassName>
<FunctionName>

<Value>createQuery</Value>
</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
</DataflowSinkRule>

Both rules target the first parameter of the same method. As opposed to the access control sink rule,
the SQL injection sink rule must have an incoming parameter that is not a number. The Dataflow
Analyzer checks for the presence of the neutral taint flag VALIDATED_SQL_INJECTION. If that taint is
present, no vulnerability can occur and Fortify Static Code Analyzer does not report a vulnerability.

Persistent Cross-Site Scripting

This scenario highlights the rules that are necessary for Fortify to detect cross-site scripting (XSS)
vulnerabilities in the application. The Dataflow Analyzer uses the source, sink, and passthrough rules

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 72 of 157

to identify this type of vulnerability.

The scenario demonstrates how an attacker can exploit a cross-site scripting vulnerability. It then
shows how the Dataflow Analyzer uses source, sink, and passthrough rules to identify this type of
vulnerability.

This scenario highlights the following vulnerability:

l Cross-site scripting—Sending unvalidated data to a web browser can result in the browser
executing malicious code.

This scenario highlights the following analysis and rule concepts:

l General taint
l Neutral taint
l Passthrough
l Sink
l Source
l Specific taint

Source Code

The application contains a cross-site scripting vulnerability in the transaction page. An attacker can
type malicious content into a transaction description. The victim receives a transaction notice. When
the victim views the transaction details, the application delivers malicious content to the browser. The
attacker can use this vector to execute JavaScript or other malicious content in the victim's browser.
Any code that renders the details of a transaction is potentially vulnerable to this attack.

The following example shows the JSP page that renders these details for a given account number:

<%
String accountNumber = request.getParameter("acctno");
if ((accountNumber != null) && (accountNumber.length() > 0)) {

Long account = Long.valueOf(accountNumber);
List transactions = TransactionService.getTransactions(account);
pageContext.getOut().println(

"<h1>Transactions reported from database for account <i>"
+ accountNumber + "</i></h1>");

try {
for (Iterator it = transactions.iterator(); it.hasNext();) {

Transaction transaction = (Transaction)it.next();
String transactionDescription =

"Transaction reported["+transaction.getId()+"]: "
+ "Account "+ transaction.getAcctno() + "; "
+ "Amount " + transaction.getAmount() + "; "
+ "Date " + transaction.getDate() + "; "
+ "Description " + transaction.getDescription();

pageContext.getOut().flush();
pageContext.getOut().println("<pre>"+transactionDescription+"</pre>");

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 73 of 157

}
...

The code enumerates an account's transactions and prints the details of each transaction to the
response stream. To do this, the JSP page calls TransactionService.getTransactions() to
retrieve the transactions associated with the account specified by acctno.

The following example shows the source code that retrieves the data from the database:

public static List getTransactions(Long acctno) throws Exception {
Session session = ConnectionFactory.getInstance().getSession();
String queryStr = "from Transaction transaction where transaction.acctno ='"

+ acctno
+ "' ORDER BY date DESC";

if (ServletActionContext.getServletContext() != null)
ServletActionContext.getServletContext().log(queryStr);

Query query = session.createQuery(queryStr);
List transactions = query.list();
session.close();

return transactions;
}

This method calls Query.list() to retrieve the associated transactions from the database. The code
in the previous example calls this method and does not validate the transactions list. This code
contains a cross-site scripting vulnerability.

Rules

First, the JSP code calls a method to retrieve data from the database. A dataflow source rule models
this method as a source of taint for Fortify Static Code Analyzer. Then, the JSP code calls methods to
traverse the data. Fortify Static Code Analyzer uses dataflow passthrough rules to track the tainted
data through these methods. Finally, the JSP code writes the data to the response stream. Fortify
Static Code Analyzer uses dataflow sink rules to detect the final output.

The following example dataflow source rule models the call to Query.list() as a source of tainted
data:

<DataflowSourceRule formatVersion="23.1" language="java">
<RuleID>9ECA2C61-7625-41DB-967B-92768358C811</RuleID>
<TaintFlags>+XSS,+DATABASE</TaintFlags>
<FunctionIdentifier>

<NamespaceName>
<Value>net.sf.hibernate</Value>

</NamespaceName>
<ClassName>

<Value>Query</Value>
</ClassName>

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 74 of 157

<FunctionName>
<Value>list</Value>

</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
<OutArguments>return</OutArguments>

</DataflowSourceRule>

The <OutArguments> element in the previous rule indicates that the return value of the method
should be considered tainted. The rule also adds the taint flag XSS. This is a general taint flag that
enables the Dataflow Analyzer to associate sources of data that might be used for a cross-site
scripting attack with sinks that are potentially vulnerable to cross-site scripting.

The code in "Source Code" on page 73 iterates through the transaction list object returned from the
call to TransactionService.getTransactions(). The Dataflow Analyzer applies the previous
source rule with the result that the list object is considered tainted.

The following example shows a passthrough rule that enables the Dataflow Analyzer to propagate
and track taint from the transactions list in "Source Code" on page 73 to the it iterator variable:

<DataflowPassthroughRule formatVersion="23.1" language="java">
<RuleID>217417FB-7E50-41BA-ACB7-8159BD5211AC</RuleID>
<FunctionIdentifier>

<NamespaceName>
<Value>java.util</Value>

</NamespaceName>
<ClassName>

<Value>Collection</Value>
</ClassName>
<FunctionName>

<Value>iterator</Value>
</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
<InArguments>this</InArguments>
<OutArguments>return</OutArguments>

</DataflowPassthroughRule>

The in and out arguments specify how tainted data flows through the method. When the application
code calls the method on a tainted target object (this), the Dataflow Analyzer propagates taint to
the return value.

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 75 of 157

The following example shows the passthrough rule that enables the analyzer to understand how taint
is returned from the iterator object on the call to Iterator.next():

<DataflowPassthroughRule formatVersion="23.1" language="java">
<RuleID>D56C1363-C303-4AAB-99A9-98075D0FEB80</RuleID>
<FunctionIdentifier>

<NamespaceName>
<Pattern>java\.util</Pattern>

</NamespaceName>
<ClassName>

<Value>Iterator</Value>
</ClassName>
<FunctionName>

<Value>next</Value>
</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
<InArguments>this</InArguments>
<OutArguments>return</OutArguments>

</DataflowPassthroughRule>

Finally, the JSP code in the following example constructs a transaction description and displays it to
the user using the following code (repeated for convenience):

...
String transactionDescription = "Transaction reported["+transaction.getId()+"]: "

+ "Account "+ transaction.getAcctno() + "; "
+ "Amount " + transaction.getAmount() + "; "
+ "Date " + transaction.getDate() + "; "
+ "Description " + transaction.getDescription();

outputWriter.flush();
outputWriter.println("<pre>"+transactionDescription+"</pre>");

...

Fortify Static Code Analyzer has access to all the source code for the transaction object, which means
the Dataflow Analyzer can automatically track taint through the object's getter methods. This means
the Dataflow Analyzer can successfully track taint from the transaction object to the
transactionDescription string without the need for additional rules.

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 76 of 157

The following example shows the dataflow sink rule the Dataflow Analyzer uses to identify the XSS
vulnerability. This rule marks the JspWriter.println() function as a sink. The rule checks that the
XSS flag is present, and that the VALIDATED_CROSS_SITE_SCRIPTING flag is not. A developer might
later introduce a validation function that verifies the contents of the data. Fortify Static Code
Analyzer requires a new cleanse rule for that validation function that adds the VALIDATED_CROSS_
SITE_SCRIPTING taint flag to the data. This ensures that Fortify Static Code Analyzer does not
report a vulnerability for paths that flow through that function.

<DataflowSinkRule formatVersion="23.1" language="java">
<RuleID>5F0C1BA2-3F30-483F-9232-9DB09442801E</RuleID>
<VulnCategory>Cross-Site Scripting</VulnCategory>
<VulnSubcategory>Persistent</VulnSubcategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<Sink>

<InArguments>0</InArguments>
<Conditional>

<And>
<TaintFlagSet taintFlag="XSS"/>
<Not>

<TaintFlagSet
taintFlag="VALIDATED_CROSS_SITE_SCRIPTING_PERSISTENT"/>

</Not>
</And>

</Conditional>
</Sink>
<FunctionIdentifier>

<NamespaceName>
<Value>javax.servlet.jsp</Value>

</NamespaceName>
<ClassName>

<Value>JspWriter</Value>
</ClassName>
<FunctionName>

<Value>println</Value>
</FunctionName>
<Parameters>

<ParamType>java.lang.String</ParamType>
<WildCard min="0" max="2"/>

</Parameters>
<ApplyTo implements="true" overrides="true" extends="true"/>

</FunctionIdentifier>
</DataflowSinkRule>

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 77 of 157

The <Parameters> element in the function identifier ensures that this rule only matches versions of
the JspWriter.println() function, which takes a string as the first parameter. The <Sink>
element specifies that the first parameter is the parameter that is sensitive to taint, and specifies the
set of taint flag constraints in the <Conditional> element.

Path Manipulation

This scenario highlights the rules necessary for the Fortify Static Code Analyzer Dataflow Analyzer to
detect path manipulation vulnerabilities. The scenario demonstrates how an attacker can exploit a
path manipulation vulnerability. It then shows how the Dataflow Analyzer uses TaintEntrypoint and
sink rules to identify a path manipulation vulnerability.

This scenario highlights the following vulnerability:

l Path manipulation—This type of vulnerability enables an attacker input to control the paths used
in file system operations. An attacker can exploit this type of vulnerability to access or modify
otherwise-protected system resources.

This scenario highlights the following analysis and rule concepts:

l Conditional
l Constructor token
l TaintEntrypoint
l General taint
l Input argument
l Annotation
l Neutral taint
l Parameter signature
l Sink

Source Code

The application in this scenario is written using Spring MVC framework and contains a path
manipulation vulnerability in its banner advertisement web service. The web service enables affiliates
to provide an identifier and retrieve a JPEG image that contains an advertisement. An attacker can
enter a malicious identifier in the web request, which causes the server to respond to the request with
the contents of sensitive files.

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 78 of 157

The following code retrieves banner ads for affiliates:

@Controller
@RequestMapping("/ad")
public class BannerAdController {

static private String baseDirectory = "/images/bannerAds";

@RequestMapping("/retrieveBannerAd")
public @ResponseBody File retrieveBannerAd(@RequestParam("clientAd")

String clientAd) {
// Retrieve banner with given guid
File targetFile = new File(baseDirectory + clientAd);
return targetFile;

}
...
}

When an affiliate executes a web service call to the method
BannerAdController.retreiveBannerAd(), the application returns the image file associated with
the affiliate identifier clientAd.

The code assumes that the incoming affiliate identifier specified only a single file name, but if an
attacker provides the identifier '../../../../../windows/system.ini', the server retrieves the
file /images/bannerAds/../../../../../windows/system.ini. On most systems, this is
equivalent to /windows/system.ini.

Rules

In the example, untrusted data enters through the web service entry point and is passed to a file
constructor. The analyzer models that entry point as a source of taint using a TaintEntrypoint
characterization rule. The following example shows the rule that models this method as a source of
taint:

<CharacterizationRule formatVersion="23.1" language="java">
<RuleID>AE31740B-140B-4338-BE4F-33D7F05CC840</RuleID>
<StructuralMatch><![CDATA[

Variable p: p.enclosingFunction is
[Function f: f.parameters contains p]
and p.annotations contains
[Annotation: type.name ==
"org.springframework.web.bind.annotation.RequestParam"]

]]></StructuralMatch>
<Definition><![CDATA[

foreach p {TaintEntrypoint(p, {+WEB +XSS}) }
]]></Definition>

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 79 of 157

</CharacterizationRule>

The entrypoint rule in the previous example matches the method
BannerAdController.retrieveBannerAd() whose parameter is annotated with the
org.springframework.web.bind.annotation.RequestParam annotation. The foreach block
indicates interest in all assignments that satisfy the predicate rather than an arbitrary one. In this rule,
taint flags are added to all variables that satisfy the predicate instead of a single variable from the set
that satisfies the predicate.

The following example describes the dataflow sink rule that matches the corresponding constructor:

<DataflowSinkRule formatVersion="23.1" language="java">
<RuleID>98558CD1-708D-48E8-8C68-F93481CB15A9</RuleID>
<VulnCategory>Path Manipulation</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description ref="desc.dataflow.java.path_manipulation"/>
<Sink>

<InArguments>0</InArguments>
<Conditional>

<Not>
<TaintFlagSet taintFlag="VALIDATED_PATH_MANIPULATION"/>

</Not>
</Conditional>

</Sink>
<FunctionIdentifier>

<NamespaceName>
<Value>java.io</Value>

</NamespaceName>
<ClassName>

<Value>File</Value>
</ClassName>
<FunctionName>

<Pattern>init\^</Pattern>
</FunctionName>
<Parameters>

<ParamType>java.lang.String</ParamType>
</Parameters>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
</DataflowSinkRule>

The dataflow sink rule uses the special keyword init^ to match the File.File() constructor. This
keyword is reserved for class constructors and enables rules to match across inheritance
relationships.

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 80 of 157

When taint reaches the sink, the <Conditional> element ensures that no vulnerability is reported if
the neutral taint flag VALIDATED_PATH_MANIPULATION is also present. This taint flag indicates that
the data has been correctly validated beforehand. You can write a separate cleanse or passthrough
rule to add the neutral taint flag VALIDATED_PATH_MANIPULATION to data that passes through the
appropriate validation method.

Command Injection

This scenario highlights rules that are necessary for the Dataflow Analyzer to detect command
injection vulnerabilities. The scenario demonstrates how an attacker can exploit a command injection
vulnerability. It then illustrates how Dataflow Analyzer uses characterization TaintSource, sink, and
passthrough rules to identify this type of vulnerability.

This section highlights the following vulnerability:

l Command injection—Executing commands from an untrusted source or in an untrusted
environment can cause an application to execute malicious commands on behalf of an attacker.

This scenario highlights the following analysis and rule concepts:

l Input arguments
l Output arguments
l Passthrough
l Sink
l TaintSource

Source Code

The application contains a command injection vulnerability in its messaging service. An attacker can
formulate an email using the messaging service. The attacker enters malicious commands into a to-
address. Then the attacker submits the message to the server for processing. When the victim
receives the message, the server executes the embedded commands. Code that formulates emails
using an internal messaging class is vulnerable to this attack.

The following example shows a JSP page that uses this class to broadcast alert messages:

<% GlobalURLObject globalURLObject = applicationContext.getGlobalURLObject
();

String alertMessage = globalURLObject.message;
int messageCount = 0;

if ((alertMessage != null) && (alertMessage.length() > 0)) {
SendMessage msgClass = new SendMessage();
String specifiedUsers = globalURLObject.users;
if ((specifiedUsers != null) && (specifiedUsers.length() > 0)) {

String[] users = specifiedUsers.split(";");

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 81 of 157

for (int index=0; index < users.length; index++) {
String emailAddress = users[index];

msgClass.setTo(emailAddress);
msgClass.setSubject("Technical Difficulties");

String processedMessage = alertMessage.replaceAll("<code1>"
"The system is currently experiencing technical
difficulties.");

msgClass.setBody(processedMessage);
msgClass.setSeverity("Highest");
msgClass.execute();
messageCount++;

}
...

The JSP does some superficial processing of the message and then calls SendMessage.execute().

The following example shows how this method handles the processed message:

public void execute() {
if (isInvalidEmail(this.to)) return INPUT;

String[] cmd = getMailCommand();
String message = sendMail(cmd);

addActionMessage(message);
}

The SendMessage.execute()method calls SendMessage.getMailCommand() to generate a
command string that is executed to send the email.

The following example shows how the command string is generated:

public String[] getMailCommand() {
...
cmd[2] = java + " -cp "+ cp +

" com.fortify.samples.riches.legacy.mail.SendMail \"
" + subject + "\" \"" + severity + "\" \"" + body + "\"
" + to;

return cmd;
}

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 82 of 157

This code assumes that the email message fields do not contain |, ;, or & symbols. These symbols
represent command string delimiters on different platforms. You can include these delimiters in a
command string to execute multiple commands in the same string. For example, an attacker can
provide the message body '" & dir C:\ > c:\files.txt &'. The JSP code eventually calls the
SendMessage.execute()method to generate and execute a shell command string based on the
mail command. This method calls the SendMessage.sendMail()method to execute the command
string:

public String sendMail(String[] cmd) {
Runtime rt = Runtime.getRuntime();
//call "legacy" mail program
Process proc = null;
StringBuilder message = new StringBuilder();
try {

proc = rt.exec(cmd);
...

If an attacker submits the sample message body, the shell executes the original command and the
additional commands included in the sample message body.

Rules

Tainted data enters the JSP code through the access of the fields of the GlobalURLObject object.
The "Source Code" on page 81 illustrates this access on lines 2 and 7.

The following example taint characterization rule causes Fortify Static Code Analyzer to model that
field access as a source of tainted data:

<CharacterizationRule formatVersion="23.1" language="java">
<RuleID>471ABD87-96E0-4327-ACBB-D74C9B767155</RuleID>
<StructuralMatch><![CDATA[

FieldAccess fa0: fa0.instance is
[FieldAccess fa: fa.field.enclosingClass.supers contains
[Class c: c.name == "com.mypackage.GlobalURLObject"]
and not fa in [AssignmentStatement: lhs.location is
[Location l: l.transitiveBase === fa.transitiveBase]]]

]]></StructuralMatch>
<Definition><![CDATA[

TaintSource(fa0, {+XSS +WEB})
]]></Definition>

</CharacterizationRule>

The rule taints any field accessed from the object of type GlobalURLObject that is not on the left-
hand side of the assignment statement with WEB taint to indicate that the object contains data that
originated from the web. Traditionally, Fortify associates WEB taint with XSS taint because objects
coming from a web source might also contain JavaScript. Other rules use this extra taint to identify

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 83 of 157

cross-site scripting vulnerabilities and are not directly applicable to command injection vulnerability
detection. Note that in this example characterization rule, a foreach block is not required in the
<Definition> element because the TaintSource is written about fa0 associated with the main
predicate, which instructs the rule to match only one code structure.

The JSP code processes the incoming email message by calling the String.replaceAll()method
to replace identifier keys with message text.

The following example shows a dataflow passthrough rule that enables Fortify Static Code Analyzer
to follow taint from the alertMessage variable to the processedMessage variable:

<DataflowPassthroughRule formatVersion="23.1" language="java">
<RuleID>B1D159AE-EE88-4760-A112-8BFC5F774DE3</RuleID>
<FunctionIdentifier>

<NamespaceName>
<Value>java.lang</Value>

</NamespaceName>
<ClassName>

<Value>String</Value>
</ClassName>
<FunctionName>

<Value>replaceAll</Value>
</FunctionName>
<ApplyTo implements=true" overrides="true" extends="true"/>

</FunctionIdentifier>
<InArguments>this</InArguments>
<OutArguments>return</OutArguments>

</DataflowPassthroughRule>

The following example dataflow sink rule detects the command injection vulnerability. This rule marks
the Java Runtime.exec()method as a sink. It verifies that the VALIDATED_COMMAND_INJECTION
taint flag is not present. To add a validation function to validate the contents of the data, the
developer can write a rule for the validation function that adds the VALIDATED_COMMAND_INJECTION
taint flag to the data objects. This ensures that Fortify Static Code Analyzer does not report a
vulnerability for paths that flow through that function.

<DataflowSinkRule formatVersion="23.1" language="java">
<RuleID>E6E0AC3D-1C7B-48B1-B80D-2AC4619B0D81</RuleID>
<VulnCategory>Command Injection</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<Sink>

<InArguments>0...</InArguments>
<Conditional>

<Not>
<TaintFlagSet taintFlag="VALIDATED_COMMAND_INJECTION"/>

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 84 of 157

</Not>
</Conditional>

</Sink>
<FunctionIdentifier>

<NamespaceName>
<Value>java.lang</Value>

</NamespaceName>
<ClassName>

<Value>Runtime</Value>
</ClassName>
<FunctionName>

<Value>exec</Value>
</FunctionName>
<ApplyTo implements="true" overrides="true" extends="true"/>

</FunctionIdentifier>
</DataflowSinkRule>

Validation Construct Examples

The following example shows source code that validates against SQL injections in Java:

package com.company.package;
public final class MyValidationClass {

...
public static String cleanseSQLString(String arg) {

return arg.replaceAll("[^a-zA-Z\\s]", "");
}
...

}

Rules

If the function is part of an external library and its source is not included in the scan, write a
passthrough rule with the appropriate taint flag modifications. The following example passthrough
rule describes to the Dataflow Analyzer that tainted data does flow through the function, but that
validation is performed in the process:

<DataflowPassthroughRule formatVersion="23.1" language="java">
<RuleID>98DE1262-6A55-4C74-8A24-497FD8198421</RuleID>
<TaintFlags>+VALIDATED_SQL_INJECTION</TaintFlags>
<FunctionIdentifier>

<NamespaceName>

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 85 of 157

<Value>com.company.package</Value>
</NamespaceName>
<ClassName>

<Value>MyValidationClass</Value>
</ClassName>
<FunctionName>

<Value>cleanseSQLString</Value>
</FunctionName>
<ApplyTo implements="true" overrides="true" extends="true"/>

</FunctionIdentifier>
<InArguments>0</InArguments>
<OutArguments>return</OutArguments>

</DataflowPassthroughRule>

The following example sink rule is also needed to check for this taint flag:

<DataflowSinkRule formatVersion="23.1" language="java">
<RuleID>B5808D41-BA35-4D2F-89BF-4273BCA763E4</RuleID>
<VulnCategory>SQL Injection</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<Sink>

<InArguments>0</InArguments>
<Conditional>

<And>
<Not>

<TaintFlagSet taintFlag="NUMBER"/>
</Not>
<Not>

<TaintFlagSet taintFlag="VALIDATED_SQL_INJECTION"/>
</Not>

</And>
</Conditional>

</Sink>
<FunctionIdentifier>

<NamespaceName>
<Value>com.company.package</Value>

</NamespaceName>
<ClassName>

<Value>Connection</Value>
</ClassName>
<FunctionName>

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 86 of 157

<Value>executeQuery</Value>
</FunctionName>
<ApplyTo implements="true" overrides="true" extends="true"/>

</FunctionIdentifier>
</DataflowSinkRule>

If the function is part of the source code being scanned, a cleanse rule is more appropriate. Because
the Dataflow Analyzer already derived the passthrough behavior of the function by looking at its
code, you only need to describe the taint flags that the analyzer adds or removes with a cleanse rule
as shown in the following example:

<DataflowCleanseRule formatVersion="23.1" language="java">
<RuleID>E01B88BE-F6B2-4EF9-BE43-035A008FE1C0</RuleID>
<TaintFlags>+VALIDATED_SQL_INJECTION</TaintFlags>
<FunctionIdentifier>

<NamespaceName>
<Value>com.company.package</Value>

</NamespaceName>
<ClassName>

<Value>MyValidationClass</Value>
</ClassName>
<FunctionName>

<Value>cleanseSQLString</Value>
</FunctionName>
<ApplyTo implements="true" overrides="true" extends="true"/>

</FunctionIdentifier>
<OutArguments>return</OutArguments>

</DataflowCleanseRule>

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 87 of 157

Do this with a cleanse rule so that the analyzer applies the cleanse rule to the taint path after the
derived passthrough. A passthrough rule is applied in parallel, creating a separate taint path and
would not have the desired effect. The following diagram illustrates this concept:

The previous rules work for the following usage of the validation function:

package com.company.package;
public class MyClass {

...
public void myMethod(HttpRequest request, Connection connection) {

String query = request.getParameter("query");
connection.executeQuery(MyValidationClass.cleanseSQLString(query));

}
...

}

Many developers define their validation functions to return true or false depending on the validity of
the input. This can cause challenges for code maintenance because whether the data is validated or
not is unclear. This could lead to accidentally introduced vulnerabilities. If the validation function is

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 88 of 157

defined this way, you must modify the previous usage and the rules. The following example shows a
redefined validation function:

package com.company.package;
...
public final class MyValidationClass {

...
public static boolean isBadQuery(String arg) {

return arg.matches("[^a-zA-Z\\s]");
}
...

}

For the previous case, you can use the validation function in the following way:

package com.company.package;
public class MyClass {

...
public void myMethod(HttpRequest request, Connection connection)
throw BadInputException {
String query = request.getParameter("query");
if (!MyValidationClass.isBadQuery(query)) {

connection.executeQuery(query);
}
else {

throw BadInputException("Invalid query.");
}

}
...

}

Fortify Static Code Analyzer does not perform path-sensitive dataflow analysis because of
performance implications, and therefore can generate false positives. However, it is possible to write a
custom TaintSink characterization rule to handle this type of scenario. Even though you can write the
if statement conditional in different ways, the following taint characterization rule is only valid for the
previous example.

<CharacterizationRule formatVersion="16.20" language="java">
<RuleID>D06F30A5-DB9C-46A2-965C-A74FBC23501C</RuleID>
<VulnCategory>SQL Injection</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<StructuralMatch><![CDATA[

FunctionCall call: call.function is

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 89 of 157

[Function f: f.name == "executeQuery" and f.enclosingClass.supers
contains [Class c: c.name == "com.company.package.Connection"]]
and call.arguments[0] is [Expression inArgument:]
and not call.enclosingFunction contains
[IfStatement ifStmt: ifStmt.ifBlock contains
[FunctionCall fc2: fc2 == call] and ifStmt.expression is
[Operation onot: onot.unary and onot.lhs is
[FunctionCall fc: fc.function is [Function valf: valf.name == "isBad"
and valf.enclosingClass.supers contains
[Class valc: valc.name == "com.company.package.MyValidationClass"]]]]]

]]></StructuralMatch>
<Definition><![CDATA[

TaintSink(inArgument, [!NUMBER && !VALIDATED_SQL_INJECTION])
]]></Definition>

</CharacterizationRule>

The previous taint characterization rule matches calls to
com.company.package.Connection.executeQuery() where non-numeric and not validated taint
reaches its first argument. Fortify Static Code Analyzer does not report the vulnerability if the call
happens inside an if block of an if statement that checks that the call to
com.company.package.MyValidationClass.isBad() function returns false.

Custom Rules Guide
Chapter 4: Dataflow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 90 of 157

Chapter 5: Control Flow Analyzer Rules
This section contains the following topics:

Control Flow Analyzer and Custom Rules 91

Control Flow Analyzer and Custom Rule Concepts 93

XML Representation of Control Flow Analyzer Rules 94

Custom Control Flow Rule Scenarios 96

Control Flow Analyzer and Custom Rules
The Control Flow Analyzer finds security issues in programs that have insecure sequences of
operations. This enables Fortify Static Code Analyzer to identify many types of security problems.

The Control Flow Analyzer models each security property as a state machine. Each state machine has
the following states:

l Initial state
l Any number of internal states
l One or more error states

The state machine is in the initial state at the beginning of a function. The Control Flow Analyzer
reports a vulnerability when a state machine enters an error state.

The states in the state machine are connected by transitions. A transition leads from one state (the
source state) to another state (the destination state) and has one or more associate rule patterns.
Rule patterns specify program constructs. The state of a state machine changes from source to
destination when one of the transition’s rule patterns matches a statement that the Control Flow
Analyzer is analyzing.

A state can have any number of transitions leading out of or into it. The Control Flow Analyzer checks
the transitions leading out of a state one at a time in the order in which they appear in the state
machine definition. The Control flow Analyzer executes the first statement that matches a statement.
The Control Flow Analyzer ignores any other transition out of the same state.

You can use this to limit the number of functions that the program can call in a given context: the
state representing that context would have a transition to a safe state (possibly itself) if the program
calls an allowed function, and a transition to an error state if the program calls any function.

The Control Flow Analyzer operates interprocedurally, so if one function calls a second function, and a
state transition occurs inside that second function, the analyzer updates the state in the first (calling)
function as well.

The Control Flow Analyzer applies the transitions to the code in the order they are specified in the
rule, so the order is important. For example, you might want to have a transition into a safe state prior

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 91 of 157

to a transition into an error state, because otherwise the analyzer might always transition into an
error state without ever providing an opportunity to transition into a safe state.

The following example program uses a locking API. The API contract states that a function that
acquires the lock must release it before returning. In some cases, the sample program does not
release the lock before returning.

The following sample program does not always release the lock before returning:

function readFile(File file) {
 Lock fileLock = getLock(file);
 if (!isReadable(file)) {
 return;
 }
 doRead(file);
 releaseLock(fileLock);
 return;
}

The contract for the locking API is described as a state machine.

The following table shows the states and transitions of the state machine provided in the following
state machine control flow rule.

Source State Destination State Program Construct That Causes Transition

Unlocked (start state) Locked Call to getLock()

Locked Released Call to releaseLock()

Locked Leaked (error state) Function ends

The following control flow rule encodes this state machine:

1 state Unlocked (start);
2 state Locked;
3 state Released;
4 state Leaked (error);
5 var lock;
6 Unlocked -> Locked { lock = getLock(...) }
7 Locked -> Released { releaseLock(lock) }
8 Locked -> Leaked { #end_function() }

When the Control Flow Analyzer uses this rule to check the previous example function, the state
machine is initially in the Unlocked state. When the program acquires the lock on line 2, the state
machine transitions to the Locked state, and the rule variable maps the rule variable lock to the
program variable fileLock (see below for more discussion of rule variables). At the branch on line 3,

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 92 of 157

the Control Flow Analyzer copies the state machine. One copy runs in the "true" branch of the
conditional, and the other copy runs in the "false" branch.

Both copies are initially in the Locked state. When the copy running on the "true" branch encounters
the return statement on line 4, it transitions to the Leaked state. Because Leaked is an error state,
the Control Flow Analyzer reports a vulnerability. Meanwhile, the copy of the machine running on the
"false" branch encounters the program releasing the lock on line 7 and transitions to the Released
state. When this copy encounters the return statement on line 8, it does not transition to the error
state because there is no transition from Released to Leaked.

Control Flow Analyzer and Custom Rule Concepts

Rule Pattern

A rule pattern specifies the program constructs that cause a state transition to occur. The rule
patterns are the parts enclosed in braces.

Rule Variable

A rule variable is a part of a rule pattern that is a placeholder for an actual program value. Rule
variables tie together values used in different rule patterns. In the control flow rule on page 92, the
rule variable "lock" ties together the return value from getLock() and the parameter to
releaseLock(). Without this rule variable, the state machine transitions to the Released state
whenever any lock is released, even if some locks in the function are still unreleased.

Rule Binding

A rule binding is a mapping between a rule variable and a program value (or a set of program values).
In the control flow rule shown in "Control Flow Analyzer and Custom Rules" on page 91, the analyzer
creates a rule binding that ties the rule variable lock to the fileLock, which is a local variable. When
the analyzer evaluates other rule patterns that use the rule variable lock, the pattern only matches if
the rule binding for lockmatches the program value used in its place.

Rule variables and rule bindings enable the Control Flow Analyzer to model the behavior of specific
objects in the program, rather than just the global state of the program.

The following is an example:

1 function useTwoLocks() {
2 Lock lock1 = getLock();
3 Lock lock2 = getLock();
4 releaseLock(lock1);
5 return;
6 }

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 93 of 157

This function acquires two locks, but only releases one of them. Without rule variables, the Control
Flow Analyzer is not able to detect this error, because it sees only that releaseLock() is called,
without correlating the calls to getLock() and releaseLock(). With the rule variables in the
previous code sample, however, the analyzer correlates these two calls.

When the analyzer encounters the first getLock() call on line 2, it creates a rule binding between the
rule variable lock and the program variable lock1, and moves to the Locked state. It also creates a
copy of the state machine that remains in the Unlocked state. The analyzer then encounters the
second call to getLock().

The copy of the state machine that is in the Locked state ignores this call, because it does not match
any transitions out of the Locked state. The copy that is in the Unlocked state, however, does match
this call. The analyzer creates a second rule binding that maps the rule variable lock to the program
variable lock2, and this second copy of the state machine changes to the Locked state.

In the previous code sample, the first state machine transitions to the Released state, while the
second machine remains in the Locked state. At the return statement, the second machine changes
to the Leaked state, and the analyzer reports an issue.

XML Representation of Control Flow Analyzer Rules
The XML representation of a control flow rule is based on the representation of a vulnerability-
causing rule. In addition to the elements common to all such rules, there are some elements that are
specific to control flow rules or that are used differently in control flow rules.

The following rule shows a control flow rule example with a primary state rule:

<ControlflowRule formatVersion="23.1" language="java">
<RuleID>6FC83768-C5A0-0E26-044B-59E8A1EBA0BA</RuleID>

 <VulnCategory>Resource Leak</VulnCategory>
 <DefaultSeverity>2.0</DefaultSeverity>

<Description/>
 <Limit>
 <FunctionIdentifier>
 <FunctionName>
 <Value>ProcessRequest</Value>
 </FunctionName>
 </FunctionIdentifier>
 </Limit>
 <FunctionCallIdentifier id="allocate">
 <FunctionIdentifier>
 <FunctionName>
 <Value>AllocateResource</Value>
 </FunctionName>
 </FunctionIdentifier>
 <Conditional>

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 94 of 157

 <Not><ConstantEq argument="0" value="0"/></Not>
 </Conditional>
 </FunctionCallIdentifier>
 <FunctionIdentifier id="deallocate">
 <FunctionName>
 <Value>ReleaseResource</Value>
 </FunctionName>

</FunctionIdentifier>
 <PrimaryState>Allocated</PrimaryState>
 <Definition><![CDATA[
 state Unallocated (start);
 state Allocated;
 state Deallocated;
 state Leaked;var resource;

Unallocated -> Allocated { resource = allocate(…) }
Allocated -> Deallocated { deallocate(resource) }
Allocated -> Leaked { #end_scope(resource) }

]]></Definition>
</ControlflowRule>

The following table describes the XML elements introduced in the previous control flow rule example.

Element Description

FunctionIdentifier Like other rule types, control flow rules use <FunctionIdentifier>
elements to identify functions. Unlike most other rule types, control flow
rules can contain multiple function identifiers. This is because a state
machine defined by a control flow rule can refer to multiple functions.
This element has the following optional attribute:

l id—Specifies the name by which you can use the function identifier
within the rule definitions

FunctionCallIdentifier Function call identifiers combine <FunctionIdentifier> and
<Conditional> elements to match specific calls to a function. This
element has the following optional attribute:

l id—Specifies the name by which you can use the function identifier
within the rule definitions

Note: The id attribute of the <FunctionIdentifier> inside the
<FunctionCallIdentifier> is not used.

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 95 of 157

Element Description

Limit Control flow rules should only check specific properties in certain
functions. For example, a control flow rule could check that every

function called ProcessRequestmust call the CheckCredentials
function before calling the function AccessPrivateData.

You can prevent this rule from running on methods other than

ProcessRequest by adding a <Limit> element to the rule definition. In
this case, the <Limit> element contains one or more
<FunctionIdentifier> elements. The rule only evaluates functions
that match one of these function identifiers.

A rule with no <Limit> element runs on all functions.

PrimaryState You specify the primary state by putting the state name inside the

<PrimaryState> element. If the rule does not explicitly specify a
primary state, the error state is primary.

Control flow state machines contain multiple states. You can designate
one of these states as the primary. When you view an issue, the trace
element that displays first is the first one that transitioned into its
primary state.

If several control flow traces transition into their primary state at the
same program location, the Control Flow Analyzer groups these traces
into one control flow issue. This issue contains multiple traces.

Definition The control flow state machine definition is enclosed in the

<Definition> element. You can enclose the contents of this element in
a CDATA section to avoid the need to escape XML special characters in
the state machine definition.

Custom Control Flow Rule Scenarios
This section provides examples of custom control flow rules. You can use these examples as a basis to
write custom rules. Match your requirement with one of the examples, and tailor the rules to suit your
software.

This section contains the following topics:

Resource Leak 97

Null Pointer Check 103

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 96 of 157

Resource Leak

This scenario highlights the rules that are necessary for the Control Flow Analyzer to detect resource
leaks. This scenario demonstrates how an attacker can exploit a resource leak vulnerability. Then, it
shows how the Control Flow Analyzer uses control flow rules to identify this type of vulnerability.

This scenario highlights the following vulnerability:

l Poor code quality: resource leaks—Program can fail to release a system resource

This scenario highlights the following analysis and rule concepts:

l Control flow rules
l Finite state machines
l Non-returning rules
l #end_scope operator
l #ifblock operator

Source Code

An attacker exploits a resource leak vulnerability as a logical denial-of-service attack. Imagine code
that uses a scarce system resource and contains a resource leak. The attacker depletes the associated
resource by repeatedly executing the code. This leads to resource depletion that prevents legitimate
users from using the service.

The following code contains many resource leaks. It illustrates how the application typically sets up a
connection to its database and performs some query for necessary data. This method retrieves
detailed data about a list of roles and reports the ones that have administrative privileges:

public static void debugAdminRoles(List roles) throws Exception {
boolean auth = false;
Connection conn = null;
Statement statement = null;
ResultSet rs = null;

try {
conn = ConnFactory.getInstance().getConnection();
statement = conn.createStatement();

for (int index=0; index < roles.size(); index++) {
int roleid = ((Integer)roles.get(index)).intValue();

rs = statement.executeQuery
("SELECT rolename FROM auth WHERE roleid = " + roleid);

rs.next();

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 97 of 157

if (rs !=null && rs.getString("rolename").equals("admin")) {
System.err.println("Roleid: "+roleid+" is an admin");
rs.close();
rs = null;

}
}

}catch(Exception e) {
if (rs != null) {

rs.close();
rs = null;

}
throw e;

}
finally {

System.err.println("Terminating here temporarily");
System.exit(-1);

if (statement != null) {
statement.close();
statement = null;

}
}

}

First, the code creates a connection object based on an existing Hibernate database connection. Then,
the code creates a statement object using the new connection object. Finally, the code executes the
statement object's query method that returns a result-set object. The code must then free all the
associated resources by closing the connection, statement, and result-set objects.

The code fails to close these objects under all conditions. The code never closes the connection object
under any conditions. Also, the code attempts to close the statement object within the finally block.
However, the code executes the System.exit()method first and the Statement.close()method
is never reached. Finally, the code does not close the result-set object when the role is not an
administrator and an exception does not occur.

Rules

The Control Flow Analyzer uses an object's finite state machine (FSM) to identify unsafe sequences of
operations that should not be performed on that object.

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 98 of 157

The following illustration describes the dynamically allocated/deallocated object states of an object:

First, the analyzer allocates a separate FSM for each object. Then, the analyzer sets the object's initial
state as unallocated before code allocates the object. After code allocates an object, the analyzer
updates the object's FSM state to the allocated state. Then, the analyzer examines all codepaths that
are within the object's scope.

The analyzer encounters a codepath where the code calls the object's close()method. In such a
case, the analyzer updates the object's FSM state to the safe released state. Eventually, the object
falls out of scope. This codepath correctly releases the resource and no vulnerability exists. The
analyzer does not report a vulnerability for this path because the object falls out of scope in a safe
state.

The analyzer encounters codepaths where the object falls out-of-scope and the code has not
previously called the object's close()method. In such a case, the analyzer updates the object's FSM
state to the unsafe leaked state. The analyzer reports the vulnerability because the analyzer has
explicitly set the object's FSM state to an unsafe state.

The following rule describes the FSM model that applies for the safe and unsafe allocation of the
Connection, Statement, or ResultSet objects:

<ControlflowRule formatVersion="23.1" language="java">
<RuleID>84C341ED-9917-4901-A792-C93E6D72C5A6</RuleID>
<VulnCategory>Unreleased Resource</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 99 of 157

<Description/>
<FunctionIdentifier id="resource1">

<NamespaceName>
<Value>javax.sql</Value>

</NamespaceName>
<ClassName>

<Value>DataSource</Value>
</ClassName>
<FunctionName>

<Value>getConnection</Value>
</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
<FunctionIdentifier id="resource2">

<NamespaceName>
<Value>java.sql</Value>

</NamespaceName>
<ClassName>

<Value>Connection</Value>
</ClassName>
<FunctionName>

<Value>createStatement</Value>
</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
<FunctionIdentifier id="resource3">

<NamespaceName>
<Value>java.sql</Value>

</NamespaceName>
<ClassName>

<Value>Statement</Value>
</ClassName>
<FunctionName>

<Value>executeQuery</Value>
</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
<FunctionIdentifier id="release1">

<NamespaceName>
<Value>java.sql</Value>

</NamespaceName>
<ClassName>

<Value>Connection</Value>

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 100 of 157

</ClassName>
<FunctionName>

<Value>close</Value>
</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
<FunctionIdentifier id="release2">

<NamespaceName>
<Value>java.sql</Value>

</NamespaceName>
<ClassName>

<Value>Statement</Value>
</ClassName>
<FunctionName>

<Value>close</Value>
</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
<FunctionIdentifier id="release3">

<NamespaceName>
<Value>java.sql</Value>

</NamespaceName>
<ClassName>

<Value>ResultSet</Value>
</ClassName>
<FunctionName>

<Value>close</Value>
</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
<Definition><![CDATA[

state unallocated (start);
state allocated;
state released;
state leaked (error);

var c;

unallocated -> allocated{ c = resource1(...) | c = resource2(...) |
c = resource3(...) }

allocated-> released { c.release1(...) | c.release2(...) | c.release3
(...) |

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 101 of 157

#ifblock(c == null, true) }
allocated-> leaked { #end_scope(c) }

]]></Definition>
</ControlflowRule>

The rule declares the initial state unallocated using the additional (start) keyword. Also, the rule
declares the unsafe leaked state using the additional (error) keyword. Each method that allocates a
Connection, Statement, or ResultSet objects has a separate function identifier element
resource1, resource2, or resource3. The corresponding methods for releasing these objects are
identified as release1, release2, and release3. The analyzer transitions between the declared
states for a given object based on declared conditions in the rule such as the execution of the
declared functions.

The condition #end_scope(x) describes the special circumstance where the object x has exited
scope and is no longer accessible. In this rule, the object has been allocated in the allocated state. It
reaches the error state leaked if the object falls out of scope and is in the allocated state at the time.

The condition #ifblock(x == y,z) describes the presence of an if-block statement within the
code. It states that if x equals y with a result of z, the condition is satisfied and the analyzer should
transition to the declared state. In this rule, the conditional #ifblock(c == null,true) describes
an equality comparison between the tracked object c and the value null. If c is equal to null, code
did not successfully allocate object c. The analyzer should safely transition the object c to its safe
state because it is impossible for the object to leak resources.

There is a leak that the analyzer does not correctly identify using just this rule. The code deallocates
the Statement object within the finally block after it calls the System.exit()method. The code
never deallocates the object correctly because the System.exit()method prematurely exits the
code. The allocated object reaches the end-of-scope condition prematurely.

The analyzer needs special knowledge of methods that prematurely force an out-of-scope condition.
Otherwise, the analyzer cannot always identify when code forces an end-of-scope condition. The
following non-returning rule describes this special quality of the System.exit()method:

<NonReturningRule formatVersion="23.1" language="java">
<RuleID>775F5047-856C-4874-92A0-ADCE882AE4BB</RuleID>
<FunctionIdentifier>

<NamespaceName>
<Value>java.lang</Value>

</NamespaceName>
<ClassName>

<Value>System</Value>
</ClassName>
<FunctionName>

<Value>exit</Value>
</FunctionName>

</FunctionIdentifier>
</NonReturningRule>

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 102 of 157

When Fortify Static Code Analyzer includes the non-returning rule and control flow rules in a scan, the
Control Flow Analyzer identifies that the Statement object is not disposed of before it reaches its
premature end-of-scope condition.

Null Pointer Check

This scenario highlights rules that enable the Control Flow Analyzer to detect missing null pointer
check vulnerabilities. The scenario demonstrates how to exploit a missing null pointer check
vulnerability. Then it illustrates how the Control Flow Analyzer uses rules to identify this type of
vulnerability.

This scenario highlights the following vulnerability:

l Missing check against null—Program can dereference a null pointer because it does not check the
return value of a function that might return null

This scenario highlights the following analysis and rules concepts:

l Error state
l Finite state machine
l Starting state

Source Code

The application contains a missing null pointer check within its messaging service. An attacker can
submit a request to display a message and omit necessary pieces of information from the request.
The application throws an exception, and discloses architecture and configuration information to the
attacker.

The following example JSP code is from the application that retrieves and displays a message. It
contains a missing null check vulnerability:

<% String incomingParameter = request.getParameter("id");
Long decodedParameter = Long.decode(incomingParameter.trim());

Message msg = (Message)(MessageService.getMessage(decodedParameter).get
(0));

pageContext.setAttribute("severity" msg.getSeverity());
pageContext.setAttribute("sender" msg.getSender());
pageContext.setAttribute("subject" msg.getSubject());
pageContext.setAttribute("body, msg.getBody());

%>
...

To view a message, the browser submits a HTTP request on behalf of the user:

http://localhost:8080/riches/pages/content/ViewMessage.jsp?id=1

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 103 of 157

To exploit the missing null check vulnerability, the attacker submits a modified HTTP request:

http://localhost:8080/riches/pages/content/ViewMessage.jsp

The id parameter is no longer present and the incomingParameter variable is set to null. Then, the
JSP code calls incomingParameter.trim() and a null pointer exception occurs. Finally, the
framework sends the unhandled exception and other sensitive information to the attacker's browser.

Rules

The application contains a missing null pointer check within its messaging service. An attacker can
submit a request to display a message and omit necessary pieces of information from the request.
The application throws an exception and discloses sensitive information to the user about its
architecture and configuration.

The following illustration shows JSP code from the application that retrieves and displays a message:

The Control Flow Analyzer sets the FSM state to mayBeNull when it observes that the JSP code
assigns a value to the incomingParameter variable. At this point, the code has not yet verified that
the variable's value is not null.

Then, the analyzer observes that the code calls a method on the incomingParameter variable
without inspecting its value. The analyzer transitions the variable's FSM from the mayBeNull state to

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 104 of 157

the dereferenced error state. The analyzer reports the vulnerability when it transitions the FSM into
the error state.

Ideally, the code should inspect the object's value before using it. The analyzer then observes that the
code performs this check and transitions the object's FSM from the mayBeNull state to the checked
safe state.

The following rule describes the FSM model as a control flow:

<ControlflowRule formatVersion="23.1" language="java">
<RuleID>4A2D77FD-C901-4F22-9994-23330BC56D96</RuleID>
<VulnCategory>Missing Check against Null</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<FunctionIdentifier id="get">

<NamespaceName>
<Value>javax.servlet</Value>

</NamespaceName>
<ClassName>

<Value>ServletRequest</Value>
</ClassName>
<FunctionName>

<Value>getParameter</Value>
</FunctionName>
<ApplyTo overrides="true" implements="true" extends="true"/>

</FunctionIdentifier>
<FunctionIdentifier id="any">

<NamespaceName>
<Pattern>.*</Pattern>

</NamespaceName>
<ClassName>

<Pattern>.*</Pattern>
</ClassName>
<FunctionName>

<Pattern>.*</Pattern>
</FunctionName>

</FunctionIdentifier>
<Definition><![CDATA[

state start (start);
state mayBeNull;
state checked;
state dereferenced (error);

var f;
start -> mayBeNull { f = $get(...) }

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 105 of 157

mayBeNull -> checked { #compare(f, null) }
mayBeNull -> dereferenced { f.$any(...) | *f }

]]></Definition>
</ControlflowRule>

The analyzer initializes the FSM in the start state start. The transition from the start state to the
mayBeNull state occurs when the analyzer observes a call to a function matched by $get, and the
FSM is bound to the value returned by that function.

The analyzer transitions the FSM from the mayBeNull to the checked state when it encounters code
that compares the value to null. The #compare(f,null) statement describes this transition.

Alternatively, the analyzer transitions the FSM from the mayBeNull state to the dereferenced error
state if code dereferences the value while in this state. The statement following statement describes
this transition:

allocated -> used { f.$any(...) | *f }

Custom Rules Guide
Chapter 5: Control Flow Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 106 of 157

Chapter 6: Content and Configuration
Analyzer Rules
This section contains the following topics:

Content Analyzer and Custom Rules 107

XML Representation of Content Analyzer Rules 107

Configuration Analyzer and Custom Rules 108

XML Representation of Configuration Analyzer Rules 108

Custom Configuration Rule Scenarios 112

Content Analyzer and Custom Rules
The Content Analyzer finds security issues and policy violations in HTML content. In addition to static
HTML pages, the Content Analyzer performs these checks on files that contain dynamic HTML, such
as PHP, JSP, and classic ASP files.

Content Analyzer rules use XML XPath notation to describe problematic constructs in HTML files.
The Content Analyzer converts the HTML content into an XML form and applies the XPath rules to
this XML form.

XML Representation of Content Analyzer Rules
The following example shows a content rule:

<ContentRule formatVersion="23.1">
<RuleID>941E1563-D3A2-B73D-10D1-8C035CCCDE66</RuleID>

 <VulnCategory>Form Definition</VulnCategory>
 <DefaultSeverity>2.0</DefaultSeverity>
 <Description/>
 <XPathMatch expression="//*[local-name()='form']"/>
</ContentRule>

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 107 of 157

The following table describes the XML elements introduced in the previous content rule example.

Element Description

XPathMatch This element has the following attribute:

l expression—Specifies the XPath expression that the Content Analyzer
evaluates against the XML representation of HTML documents

Configuration Analyzer and Custom Rules
The Configuration Analyzer finds security issues in application configuration files. This analysis can
find instances where an application is configured insecurely, and can also enforce security policies by
identifying configuration files that are not in compliance with those policies. Configuration Analyzer
rules specify constraints on configuration properties.

The Configuration Analyzer understands XML files, Java properties files, and Dockerfiles. Each rule
operates on one type of file. Rules that analyze XML files and Dockerfiles use XPath notation to
describe the XML constructs that the analyzer should report. Rules that analyze properties files
specify either property names or property values that the analyzer should report. You can restrict
rules of each type to run only on files with specific names.

The Configuration Analyzer includes regular expression analysis to detect vulnerable secrets such as
passwords, keys, and credentials in source code.

XML Representation of Configuration Analyzer Rules
This section describes the XML for the following Configuration Analyzer rules:

Configuration Rules 108

Regular Expression Rules 111

Configuration Rules

Use configuration rules to check XML, Dockerfiles, or properties files. Configuration rules have a
sequence of <Check> elements. Each <Check> element specifies the properties and files that the
Configuration Analyzer checks. The contents of the <Check> element varies depending on the type of
file that the Configuration Analyzer is checking.

Custom Rules Guide
Chapter 6: Content and Configuration Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 108 of 157

The following example shows a configuration rule for an XML file:

<ConfigurationRule formatVersion="23.1">
<RuleID>8104EB17-C54C-7F22-C308-42C207C74BBD</RuleID>

 <VulnCategory>Servlet Mapping</VulnCategory>
 <DefaultSeverity>2.0</DefaultSeverity>

<Description/>
 <Check>
 <ConfigFile type="xml">
 <Value>web.xml</Value>
 </ConfigFile>
 <XPathMatch expression="//servlet-mapping"/>
 </Check>
</ConfigurationRule>

The following table describes the <Check> child elements.

Element Description

ConfigFile Specifies the file to check. This element has the following attribute:

l type—Defines the type of configuration file. The valid values are docker,
properties, and xml.

The <ConfigFile> element also contains a <Value> or <Pattern> element that
is checked against the file name of every file of the specified type. The check only

applies to files for which the file type matches the type attribute and the file
name matches the <Value> or <Pattern> inside the <ConfigFile> element.

XPathMatch This element is required for XML files and Dockerfiles. This element has the
following attribute:

l expression—Specifies the XPath expression that the Configuration Analyzer
evaluates against the XML representation of HTML documents.

For properties files, set the type attribute of the <ConfigFile> element to properties. The
following example shows a name and value match for a properties file:

<ConfigurationRule formatVersion="23.1">
<RuleID>FEC3D9F0-F29A-231B-3BD5-765CCEAF1CE5</RuleID>

 <VulnCategory>Security Not Enabled</VulnCategory>
 <DefaultSeverity>2.0</DefaultSeverity>

<Description/>
 <Check>
 <ConfigFile type="properties">

Custom Rules Guide
Chapter 6: Content and Configuration Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 109 of 157

 <Value>security.properties</Value>
 </ConfigFile>
 <NameMatch><Value>security</Value></NameMatch>
 <ValueMatch><Value>off</Value></ValueMatch>
 </Check>
 <Check>
 <ConfigFile type="properties">
 <Value>security.properties</Value>
 </ConfigFile>
 <NameMatch><Value>security</Value></NameMatch>
 <NotPresent/>
 </Check>
</ConfigurationRule>

The following table describes the <Check> child elements introduced in the previous configuration
rule for a properties file example.

Element Description

NameMatch Specifies the property name check.

ValueMatch (Optional) Contains a <Pattern> or <Value> element to check against the value
of properties whose name matches the <NameMatch> element.

NotPresent (Optional) Specifies whether the analyzer should report an issue if no property

matching the <NameMatch> element is specified in a properties file that the
<ConfigFile> element matches.

Custom Rules Guide
Chapter 6: Content and Configuration Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 110 of 157

The following example shows a configuration rule for a Dockerfile:

<ConfigurationRule formatVersion="23.1">
<RuleID>43f78d03-c2cb-46ed-bfaa-d2d507a61725</RuleID>
<VulnKingdom>Environment</VulnKingdom>
<VulnCategory>Dockerfile Misconfiguration</VulnCategory>
<VulnSubcategory>Unapproved Image</VulnSubcategory>
<DefaultSeverity>5.0</DefaultSeverity>
<Description />
<Check>

<ConfigFile type="docker">
<Pattern>.*\.[D|d]ockerfile</Pattern>

</ConfigFile>
<XPathMatch expression="//Instruction[@name='FROM']//Image[not(matches

(text(),'(approvedImage1|approvedImage2)\.company\.com'))]"/>
</Check>

</ConfigurationRule>

Regular Expression Rules

Use regular expression rules to find vulnerabilities in both file content and file names (paths) using
regular expressions. The rule can include regular expressions for the file content or a file name or
both. If you use both file content and file name in a RegexRule, both regular expressions must match
in order for the rule to flag a vulnerability.

The following example uses both file content and file name regular expressions to find occurrences of
jsmith in files with extensions .txt, .js, and .html.

<RegexRule formatVersion="23.1">
<RuleID>8076CEE1-D63B-4DA8-947C-98DE4BD33873</RuleID>
<VulnKingdom>Security Features</VulnKingdom>

 <VulnCategory>Password Management</VulnCategory>
<VulnSubcategory>Hardcoded Username</VulnSubcategory>

 <DefaultSeverity>5.0</DefaultSeverity>
<Description/>
<ContentRegex>jsmith</ContentRegex>

 <FileNameRegex>.*\.(txt|js|html)</FileNameRegex>
</RegexRule>

The following table describes the child elements.

Element Description

ContentRegex This element specifies a regular expression to match in the file content. Use

Custom Rules Guide
Chapter 6: Content and Configuration Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 111 of 157

Element Description

the regular expression syntax defined in com.google.RE2.

Tip:

l ^ and $match begin and end of a file (in RE2, the m flag for multi-line
mode is false by default)

l A . does not match newline (in RE2, the s flag is false by default)
l Uses the find instead of match method (regular expressions in the

ContentRegex element do not need to account for characters or rows
before or after the intended match)

FileNameRegex This element specifies a regular expression to match in the file name (or path).
Use the regular expression syntax defined in java.util.regex package.

Tip:

l Regardless of the operating system, use forward slash (/) for path
separators

l Uses match instead of find method (for example, to match secret.key
in the

path C:/path/to/sourcecode/src/main/resources/secret.key,
use the regular expression .+/secret\.key)

l Matches are made on absolute paths

Custom Configuration Rule Scenarios
This section provides examples of custom configuration rules.

This section contains the following topics:

Property File 112

Tomcat File 114

Authentication Tokens in Files 115

Property File

This scenario demonstrates the rules that enable the Configuration Analyzer to detect configuration
vulnerabilities. The scenario illustrates how an incorrect setting can lead to unexpected downtime in a
production environment. Then it shows how the Configuration Analyzer uses rules to identify and
report these incorrect settings.

Custom Rules Guide
Chapter 6: Content and Configuration Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 112 of 157

This scenario highlights the following vulnerability:

l Environment misconfiguration—Configuration files for an application contain incorrect values in a
production environment. These misconfigurations typically introduce other vulnerabilities,
including those related to communication security, authentication, authorization, data security, and
exception handling.

This scenario highlights the following analysis and rule concepts:

l Configuration rules
l Java regular expressions
l Property files

Source Code

By convention, users should send and receive messages through the gateway of the production mail
system. In test cases, however, the system routes messages through the gateway of the test
environment. In this scenario, the incorrect SMTP setting is released into the production environment.

The following example shows the sample SMTP configuration:

riches.mail.smtpHostname = mail.test.riches.com
riches.mail.smtpPort = 25
riches.mail.username = test
riches.mail.password = passw0rd1!

After loading these incorrect values, the mail handling code sends messages through
mail.test.riches.com instead of the production gateway.

Rule

The following configuration rule detects the invalid SMTP hostname value in the properties file:

<ConfigurationRule formatVersion="23.1">
<RuleID>B8319D1B-65B3-4BFA-A0BE-8F1891D727E9</RuleID>
<VulnCategory>J2EE Misconfiguration</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<ConfigFile type="properties">

<Value>mailserver.legacy.properties</Value>
</ConfigFile>
<PropertyMatch>

<NameMatch>
<Value>riches.mail.smtpHostname</Value>

</NameMatch>
<ValueMatch>

<Pattern caseInsensitive="true">(.*)\.test.riches.com</Pattern>

Custom Rules Guide
Chapter 6: Content and Configuration Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 113 of 157

</ValueMatch>
</PropertyMatch>

</ConfigurationRule>

The configuration rule targets the mailserver.legacy.properties properties file. It compares the
value of the property riches.mail.smtpHostname to the Java regular expression
(.*)\.test.riches.com. The value should never match a string with the following sequence: zero
or more characters; a period; and then the characters test.riches.com. If this sequence occurs, the
Configuration Analyzer identifies a configuration vulnerability.

Tomcat File

This scenario highlights the rules that enable the Configuration Analyzer to identify specific
configuration vulnerabilities. The scenario demonstrates how a misconfiguration in the application
can lead to the disclosure of sensitive information. It then shows how the Configuration Analyzer uses
rules to identify this type of misconfiguration.

This scenario highlights the following vulnerability:

l J2EE Misconfiguration—Underlying infrastructure that supports the application is improperly
configured

This results in new vulnerabilities related to communication security, data security, and exception
handling.

This scenario highlights the following analysis and rules concepts:

l Configuration rules
l Java regular expressions
l XML files
l XPath expressions

Source Code

The application is deployed in a Tomcat Web server shared by multiple applications. Some of the
applications rely on the server to authenticate incoming requests. The Tomcat configuration file
contains a realm that describes the authentication configuration of another application. The following
example shows an incorrect configuration detection rule:

<Realm className="org.apache.catalina.realm.JAASRealm"
appName="RichesDiscover"
userClassNames="com.fortify.samples.riches.security.UserPrincipal"
roleClassNames="com.fortify.samples.riches.security.RolePrincipal"
debug = "3"/>

Custom Rules Guide
Chapter 6: Content and Configuration Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 114 of 157

The realm descriptor application in the previous example uses an authentication configuration with a
debug level greater than two. With this configuration, the authentication service logs the user names
and passwords in a plain text file, which can compromise security.

Rule

The following rule identifies an XML document that contains a node Realm with a debug attribute
value set to a number greater than two:

<ConfigurationRule formatVersion="23.1">
<RuleID>E9E3B4F0-CBDA-4695-94FD-3D41D68D19CB</RuleID>
<VulnCategory>J2EE Misconfiguration</VulnCategory>
<DefaultSeverity>2.0</DefaultSeverity>
<Description/>
<ConfigFile type="xml">

<Pattern>(.*)\.xml</Pattern>
</ConfigFile>
<XPathMatch expression="count(//Realm[@debug > 2]) > 0"
reporton="//Realm[@debug > 2]/@debug"/>

</ConfigurationRule>

The XPath expression //Realm[@debug > 2]) describes the XML content necessary for the
Configuration Analyzer to identify the misconfiguration. The expression identifies any Realm
elements that have a debug attribute with value greater than two. The <XPathMatch reporton>
condition specifies that Fortify Static Code Analyzer reports the problematic debug attribute instead
of the parent Realm element.

Authentication Tokens in Files

In this scenario, a company has an internal system to which they authenticate with tokens. The tokens
are 30 characters long and prefixed with CST_. A regular expression rule can be used to find these
tokens in source code and other text-based files.

Rule

The following rule identifies files that contain the authentication token:

<RegexRule formatVersion="23.1">
<RuleID>42DC4DF5-663D-456A-9E40-98313BD43C2A</RuleID>
<VulnKingdom>Security Features</VulnKingdom>
<VulnCategory>Key Management</VulnCategory>
<VulnSubcategory>Hardcoded API Token</VulnSubcategory>
<DefaultSeverity>3.0</DefaultSeverity>
<Description ref="desc.regex.universal.key_management_hardcoded_

encryption_key" />

Custom Rules Guide
Chapter 6: Content and Configuration Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 115 of 157

<ContentRegex>CST_[a-zA-Z0-9]{30}</ContentRegex>
</RegexRule>

Custom Rules Guide
Chapter 6: Content and Configuration Analyzer Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 116 of 157

Chapter 7: Manipulation Rules
This section contains the following topics:

Suppression Rules 117

XML Representation of Suppression Rules 119

Alias Rules 119

XML Representation of Alias Rules 120

Result Filter Rules 120

XML Representation of Result Filter Rules 121

Suppression Rules
You can use a custom suppression rule to disable an existing rule so that it is no longer processed
during analysis. You might want to suppress a rule if you notice that a particular rule produces many
false positives. If you heavily invest in custom rules, this might be the preferred approach as the
suppression rules reside with your custom rules.

Keep in mind that unlike suppression of specific issues during an audit, the suppression rules
eliminate all results generated by a particular rule. Furthermore, if a rule that you have suppressed is
updated in a future Rulepack release, you will need to manually disable the suppression rule to utilize
the update.

The following table describes alternate methods of removing issues from your results.

Method Stage Used Advantages Disadvantages Notes

Filter file During the scan l Shorter scan
times

l Smaller FPR file
size

l Easy to filter
out an entire
class of
vulnerabilities
or specific rules
that detect
them

l Requires a
rescan to
generate
filtered-out
issues

l Issues are
blindly filtered
out based on
category, rule
ID, or instance
ID

For more
information
about filter files,
see the Fortify
Static Code
Analyzer
User Guide.

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 117 of 157

Method Stage Used Advantages Disadvantages Notes

Cleanse rule During the scan l Rules reside
with other
custom rules

l Only filters out
issues that
involve
validated data

l Requires
additional
effort to review
APIs and
develop rules

For information
about dataflow
cleanse rules,
see "Cleanse
Rules" on
page 65.

Suppress issue
post scan

During the audit l Easy to filter
out issues from
the view

l Issue remains
suppressed
over rescans
and audits

l Does not
decrease the
scan time

l Does not
reduce the
FPR file size

You can
suppress issues
in an auditing
tool such as
Fortify Audit
Workbench or
Fortify Software
Security Center.

Filter set During the scan l Easy to filter
out issues
based on many
different
attributes

l Smaller FPR file
size

l Does not
always
decrease the
scan time

For more
information see
the Fortify Static
Code Analyzer
User Guide
and the Fortify
Audit
Workbench User
Guide.During the audit l Easy to filter

out issues from
the view based
on many
different
attributes

l No rescan
required to
make the
filtered issues
become visible
again

l Does not
reduce the
FPR file size

Custom Rules Guide
Chapter 7: Manipulation Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 118 of 157

XML Representation of Suppression Rules
The following example shows a suppression rule:

<SuppressionRule formatVersion="23.1">
<RuleID>6200BAFA-AA33-4DEE-A1E7-B9EDDBA9D315</RuleID>

</SuppressionRule>

The <RuleID> element specifies the unique rule identifier for the Fortify rule you want to disable.

Note: If the suppression rule formatVersion attribute value is earlier than the format version of
the latest rule with that rule ID, then the suppression rule only affects earlier versions of that rule.
For example, if the default Rulepacks contain three versions of the rule 941E1563-D3A2-B73D-
10D1-8C035CCCDE99 (for versions: 3.60, 16.20, and 20.1), and the formatVersion of the
suppression rule is 16.20, then the suppression rule only suppresses the 3.60 and 16.20 versions
of the rule. This means that the rule identified by 941E1563-D3A2-B73D-10D1-8C035CCCDE99
is still triggered by Fortify Static Code Analyzer versions later than 16.20.

Alias Rules
Use alias rules to specify a function that mimics the behavior of another function. Alias rules are ideal
to use when your organization invests in the usage of proprietary libraries and APIs that mimic the
behavior of standard functions covered by the Fortify Secure Coding Rulepacks.

For example, it is common for organizations to implement their own version of memory management
functions that behave similarly to the standard malloc() function. For this example, assume that the
proprietary function is called my_malloc(). The standard Secure Coding Rulepacks include several
different types of rules for the malloc() function, but no rules exist for my_malloc(). To generate
complete results during the scan of their code, organizations can either:

l Write every type of rule that the Fortify team has already written for malloc() for the proprietary
my_malloc() function

l Write one alias rule to indicate that the proprietary function my_malloc() behaves exactly like
malloc()

The first option is time consuming and error-prone, while the second option makes sure that all the
Fortify rules written for malloc() are automatically triggered on my_malloc().

Custom Rules Guide
Chapter 7: Manipulation Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 119 of 157

XML Representation of Alias Rules

The functions defined in the <From> element will match the defined functions that exist in the
standard Fortify Secure Coding Rulepacks defined in the <To> element. The following example alias
rule shows that the proprietary function my_malloc() behaves exactly like malloc():

<AliasRule formatVersion="23.1" language="cpp">
<RuleID>5705796F-A199-7D69-35F6-B18C9AA5631C</RuleID>
<From>

<FunctionName>
<Pattern>my_malloc</Pattern>

</FunctionName>
</From>
<To>

<FunctionName>malloc</FunctionName>
</To>

</AliasRule>

For descriptions of the alias rule elements, see "FunctionIdentifier Element" on page 21.

Result Filter Rules
Fortify Static Code Analyzer uses several analyzers and mechanisms to detect potential
vulnerabilities in the source code. Sometimes the same vulnerability is detected in several different
ways or manifests itself through more than one Fortify result, generating a duplicate issue. For
example, SQL Injection vulnerabilities are detected by both the Semantic Analyzer and the Dataflow
Analyzer, which results in two issues being reported: one by each analyzer. Similarly, SQL Injection
and Access Control: Database results, when reported on the same line of code, can represent the same
lack of validation issue, generating a duplicate issue. While Fortify Static Code Analyzer performs
automatic filtering internally, the filtering capability is also available externally in the form of result
filter rules. With result filter rules, you can specify that one issue is treated as dominant and is
included in the analysis results instead of other (subordinate) issues detected on the same line of
code.

Custom Rules Guide
Chapter 7: Manipulation Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 120 of 157

XML Representation of Result Filter Rules

Result filter rules have a <Check> element that encompasses the primary logic of the filtering
directive. You can filter based on the analyzer and optionally a category name and a rule ID. For each
of the three options, you must specify the dominant value and the subordinate value with
<Dominant> and <Subordinate> elements, respectively. You can also use a special value of
<SameValue/> to specify that the dominant and subordinate category name or rule ID are the same.

In the following example, if several dataflow issues are detected by rules A, B, or C on the same line of
code, the issue detected by rule A is reported and the issues detected by rules B or C are filtered out
of the results:

<ResultFilterRule formatVersion="23.1">
<RuleID>D811682A-C81D-43C6-BA82-7A38143626B9</RuleID>
<Check>

<AnalyzerName>
<Dominant>dataflow</Dominant>
<Subordinate>dataflow</Subordinate>

</AnalyzerName>
<RuleID>

<Dominant>
<Value>[UNIQUE_RULEID_A]</Value>

</Dominant>
<Subordinate>

<Pattern>[UNIQUE_RULEID_B]|[UNIQUE_RULEID_C]</Pattern>
</Subordinate>

</RuleID>
</Check>

</ResultFilterRule>

Custom Rules Guide
Chapter 7: Manipulation Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 121 of 157

In the following example, if both the Dataflow Analyzer and the Control Flow Analyzer detected
several issues for category A, only the issue detected by the dominant analyzer (Dataflow) is included
in the results:

<ResultFilterRule formatVersion="23.1">
<RuleID>A258D536-F153-4B7E-9BAF-B8B895BA5719</RuleID>
<Check>

<AnalyzerName>
<Dominant>dataflow</Dominant>
<Subordinate>controlflow</Subordinate>

</AnalyzerName>
<Category>

<Dominant>
<Value>[CATEGORY_A]</Value>

</Dominant>
<Subordinate>

<Value>[CATEGORY_A]</Value>
</Subordinate>

</Category>
</Check>

</ResultFilterRule>

In the following example, if multiple issues are reported on the same line of code, the Dataflow
Analyzer results dominate over the Structural Analyzer results with the same category names:

<ResultFilterRule formatVersion="23.1">
<RuleID>A5035F9A-E92B-4337-8F6D-26F6D98737ED</RuleID>
<Check>

<AnalyzerName>
<Dominant>dataflow</Dominant>
<Subordinate>structural</Subordinate>

</AnalyzerName>
<Category>

<SameValue/>
</Category>

</Check>
</ResultFilterRule>

Custom Rules Guide
Chapter 7: Manipulation Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 122 of 157

The following table describes the <Check> child elements used in the previous result filter rule
examples.

Element Description

AnalyzerName Specifies the analyzer name. The valid values are buffer, configuration,
content, controlflow, dataflow, semantic, and structural.

Category Use the <Dominant> and <Subordinate> child elements to specify the
dominant and subordinate vulnerability categories. You can specify this value

as either a string (<Value> element) or a regular expression (<Pattern>
element).

RuleID Use the <Dominant> and <Subordinate> child elements to specify the
dominant and subordinate rule identifiers. You can specify this value as either a

string (<Value> element) or a regular expression (<Pattern> element).

Custom Rules Guide
Chapter 7: Manipulation Rules

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 123 of 157

Chapter 8: Custom Vulnerability Category
Mapping
Fortify distributes an external metadata document with the Secure Coding Rulepacks. This
XML document provides mappings from the vulnerability categories in the Fortify Taxonomy to
alternative categories (such as CWE, OWASP Top 10, and PCI). For more information, see The
Evolution of a Taxonomy: Ten Years of Software Security. You can customize these mappings found
in standards and industry best practices or create your own files to map Fortify issues to different
taxonomies, such as internal application security standards or additional compliance obligations.

This section contains the following topics:

Mapping Fortify Categories to Alternative External Categories 124

External Metadata XML Structure 125

Example Mappings 132

Mapping Fortify Categories to Alternative External
Categories
To add custom vulnerability category mappings for your organization, you need to create your own
external metadata document. You need to map the external categories to the Fortify categories. You
can find the list of Fortify categories on the Fortify Taxonomy website at https://vulncat.fortify.com.

Note: The Fortify-provided external metadata XML document is in the <sca_install_
dir>/Core/config/ExternalMetadata directory. This document is overwritten whenever you
update the security content.

Use any XML editor to create a new external metadata document. See "External Metadata
XML Structure" on the next page for an overview of the XML hierarchy. Save your new document to
the <sca_install_dir>/Core/config/CustomExternalMetadata directory so that your
changes are not lost during security content updates. Name the file you put into the
CustomExternalMetadata folder <anything>.xml. Placing your custom external metadata file into
the CustomExternalMetadata folder, makes the custom category mappings available to Fortify
Audit Workbench.

To validate your custom category mappings, use the externalmetadata.xsd file, which is available
in the <sca_install_dir>/Core/config/schemas directory.

To apply the custom external metadata XML document across all applications in Fortify Software
Security Center, you must first import it into Fortify Software Security Center. For more information,
see the Fortify Software Security Center User Guide.

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 124 of 157

https://vulncat.fortify.com/data/HPSR_An_Evolving_Taxonomy_2014.pdf
https://vulncat.fortify.com/data/HPSR_An_Evolving_Taxonomy_2014.pdf
https://vulncat.fortify.com/

After you import your custom external metadata document and scan your projects, custom category
names are displayed in the Group By menu as you review the analysis results in Fortify Audit
Workbench and Fortify Software Security Center. You can also search for issues using your custom
category names.

External Metadata XML Structure
The following diagram provides an overview of the external metadata document's XML structure. The
<ExternalList> and the <ExternalListExtention> elements contain the same two elements.
The following sections describe the elements in detail. Note that all elements and options are required
unless indicated otherwise.

ExternalMetadataPack Element

The root element of the external metadata document is <ExternalMetadataPack>. The
<ExternalMetadataPack> element contains the following XML child elements: <PackInfo>,
<ExternalList>, and <ExternalListExtension>.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ExternalMetadataPack
xmlns="xmlns://www.fortifysoftware.com/schema/externalMetadata" schemaVersion="1.1">

<PackInfo>...</PackInfo>
<ExternalList>... </ExternalList>
<ExternalList>... </ExternalList>

 ...
<ExternalList>... </ExternalList>
<ExternalListExtension>...</ExternalListExtension>
<ExternalListExtension>...</ExternalListExtension>

Custom Rules Guide
Chapter 8: Custom Vulnerability Category Mapping

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 125 of 157

 ...
<ExternalListExtension>...</ExternalListExtension>

</ExternalMetadataPack>

Fortify Software checks the schemaVersion attribute to confirm that you are using a supported
schema version. You can find the current version in the <sca_install_
dir>/Core/config/schemas/externalmetadata.xsd file.

The following table describes the <ExternalMetadataPack> child elements.

Element Description

PackInfo Contains information about the external metadata package. You must

have one <PackInfo> element in an external metadata document. See
"PackInfo Element" on the next page.

ExternalList (Optional) A group of external mappings.

Note: Only use <ExternalList> elements for new external
mappings. To extend an existing list, use the

<ExternalListExtension> element.

This element contains the following attribute:

obsolete—(Optional) A value of true indicates that the external list
group is obsolete. Fortify software products do not display obsolete
external lists for grouping and filtering scan results. The default value is

false.

An <ExternalMetadataPack> can include multiple <ExternalList>
elements. Each <ExternalList> element contains:

l Name

l Description

l External category descriptions

l Mappings of external to Fortify categories

See "ExternalList Element" on page 128.

Custom Rules Guide
Chapter 8: Custom Vulnerability Category Mapping

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 126 of 157

Element Description

ExternalListExtension (Optional) A group of supplemental definitions and mappings for an

existing <ExternalList> element. An ExternalMetadataPack can
include multiple <ExternalListExtension> blocks. The
<ExternalListExtension> element enables you to supplement the
mappings in an existing list, however, you cannot override existing

mappings. Each <ExternalListExtension> element contains:

l Parent identifier (reference to an existing <ExternalList> element)
l External category descriptions

l Mappings of external to Fortify categories

See "ExternalListExtension Element" on page 129.

PackInfo Element

The <PackInfo> element contains high-level information to provide a unique name, identifier, and
version for the mapping file. The following is an example:

<PackInfo>
<Name>Main External List Mappings</Name>
<PackID>main-external-mappings</PackID>
<Version>2020.3.0.0009</Version>

</PackInfo>

The following table describes the <PackInfo> child elements.

Element Description

Name A unique name for the <ExternalMetadataPack>. Spaces are allowed.

PackID A unique identifier for the <ExternalMetadataPack>.

Version Version of the <ExternalMetadataPack>.

Description (Optional) A description of this external metadata.

Locale (Optional) The locale for the Rulepack. The valid values are en, es, ja, ko, pt_BR,
zh_CN, and zh_TW.

Custom Rules Guide
Chapter 8: Custom Vulnerability Category Mapping

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 127 of 157

ExternalList Element

The <ExternalList> element contains a list of external categories and mappings. The following
example shows a partial external list element for OWASP Top 10 2017:

<ExternalList>
<ExternalListID>3C6ECB67-BBD9-4259-A8DB-B49328927248</ExternalListID>
<Name>OWASP Top 10 2017</Name>
<Shortcut>OWASP2017</Shortcut>
<Shortcut>OWASP 2017</Shortcut>
<Shortcut>OWASP Top Ten 2017</Shortcut>
<Shortcut>OWASP Top 10 2017</Shortcut>
<Description>The OWASP Top Ten 2017 provides a

 powerful awareness document for web application security
 ...

</Description>
<Group>OWASP</Group>
<ExternalCategoryDefinition>...</ExternalCategoryDefinition>
<ExternalCategoryDefinition>...</ExternalCategoryDefinition>

 ...
<ExternalCategoryDefinition>...</ExternalCategoryDefinition>

<Mapping>...</Mapping>
<Mapping>...</Mapping>

 ...
<Mapping>...</Mapping>

</ExternalList>

The following table describes the <ExternalList> child elements.

Element Description

ExternalListID Unique identifier (GUID) for the external list.

Name Fully qualified name of the external list. This is the primary display
string, and is also used for searches along with shortcuts.

Shortcut (Optional) Shortcut names for the external list. You can use the
shortcut strings in searches. You can have multiple shortcuts for an
external list.

Description Description of the external list.

Group Group name used to tie several external lists together.

Custom Rules Guide
Chapter 8: Custom Vulnerability Category Mapping

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 128 of 157

Element Description

ExternalCategoryDefinition (Optional) The <ExternalCategoryDefinition> element
describes an external category. You should have one external

category definition for each <ExternalCategory> in a
<Mapping> element. You can have multiple
<ExternalCategoryDefinitions> for an external list. Each
<ExternalCategoryDefinition> contains a name, description,
and order information (see "ExternalCategoryDefinition Element"
on the next page).

Mapping (Optional) The <Mapping> element maps the Fortify category to
the external category. Each <ExternalCategory> in a
<Mapping> element should have a corresponding
<ExternalCategoryDefinition>. You can have multiple
mappings for an external list. Each <Mapping> element contains a
Fortify category and an external category (see "Mapping Element"
on page 131).

OrderingInfo (Optional) An integer that indicates the external list sort order

within the <ExternalMetadataPack> element.

ExternalListExtension Element

The <ExternalListExtension> element contains an extension of an existing external list. Use this
element to provide an extension to an existing mapping. For example, if you want to have your own
custom rules, categories, and descriptions then it would be useful to also extend the mappings for
relevant standards rather than write a new one.

<ExternalListExtension>
<ExternalListID>EEE3F9E7-28D6-4456-8761-3DA56C36F4EE</ExternalListID>

<ExternalCategoryDefinition>...</ExternalCategoryDefinition>
<ExternalCategoryDefinition>...</ExternalCategoryDefinition>

 ...
<ExternalCategoryDefinition>...</ExternalCategoryDefinition>

<Mapping>...</Mapping>
<Mapping>...</Mapping>

 ...
<Mapping>...</Mapping>

</ExternalListExtension>

The following table describes the <ExternalListExtension> child elements.

Custom Rules Guide
Chapter 8: Custom Vulnerability Category Mapping

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 129 of 157

Element Description

ExternalListID Reference to an existing external list identifier (required).

ExternalCategoryDefinition (Optional) The <ExternalCategoryDefinition> element
describes an external category. You should have one external

category definition for each <ExternalCategory> in a
<Mapping> element. You can have multiple
<ExternalCategoryDefinitions> for an external list
extension. Each <ExternalCategoryDefinition> contains a
name, description, and order information. See
"ExternalCategoryDefinition Element" below.

Mapping (Optional) The <Mapping> element maps the Fortify category to
the external category. Each <ExternalCategory> in a
<Mapping> element should have a corresponding
<ExternalCategoryDefinition>. You can have multiple
mappings for an external list extension. Each <Mapping> element
contains a Fortify category and an external category. See "Mapping
Element" on the next page.

ExternalCategoryDefinition Element

The <ExternalCategoryDefinition> element describes an external category. The following
example is from the Fortify-provided OWASP Top 10 2017 external list:

<ExternalCategoryDefinition>
<Name>A7 Cross-Site Scripting (XSS)</Name>
<Description>OWASP Top 10 Application Security Risks,

 A7:2017 states: "XSS flaws... </Description>
<OrderingInfo>7</OrderingInfo>

</ExternalCategoryDefinition>

The following table describes the <ExternalCategoryDefinition> child elements.

Element Description

Name Name of the external category.

Description Description of the external category.

OrderingInfo (Optional) An integer that indicates the external category definition sort order

within the <ExternalList> element. Fortify Software components use the sort
order when displaying categories, for example in reports.

Custom Rules Guide
Chapter 8: Custom Vulnerability Category Mapping

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 130 of 157

Mapping Element

The <Mapping> element maps a Fortify category to an external category. The following example is
from the Fortify-provided OWASP Top 10 2017 external list:

<Mapping>
<InternalCategory>Cross-Site Scripting: Reflected
</InternalCategory>
<ExternalCategory>A7 Cross-Site Scripting (XSS)
</ExternalCategory>

</Mapping>

The following table describes the <Mapping> child elements.

Element Description

InternalCategory Name of the Fortify vulnerability category from the seven pernicious

kingdoms (for example, Cross-Site Scripting: Reflected). You can
use the same Fortify category in more than one mapping, providing for
many-to-one or many-to-many relationships.

Note: The Fortify vulnerability category name is case-sensitive.

ExternalCategory Name of the external category that is specified as the <Name> element in an
<ExternalCategoryDefinition> element. You can use the same external
category in more than one mapping, enabling one-to-many or many-to-
many relationships.

XML Skeleton

You can copy and paste the following XML skeleton to create a new external metadata document:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<ExternalMetadataPack
xmlns="xmlns://www.fortifysoftware.com/schema/externalMetadata" schemaVersion="1.1">

<PackInfo>
<Name>PACKAGE_NAME</Name>
<PackID>PACKAGE_ID</PackID>
<Version>VERSION</Version>

</PackInfo>

<ExternalList>
<ExternalListID>GUID</ExternalListID>

Custom Rules Guide
Chapter 8: Custom Vulnerability Category Mapping

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 131 of 157

<Name>EXTERNAL_LIST_NAME</Name>
<Shortcut>EXTERNAL_LIST_SHORTCUT</Shortcut>
<Description>DESCRIPTION</Description>
<Group>GROUP_NAME</Group>

<ExternalCategoryDefinition>
<Name>EXTERNAL_CATEGORY_NAME</Name>
<Description>EXTERNAL_CATEGORY_DESCRIPTION</Description>
<OrderingInfo>CATEGORY_ORDER_NUMBER</OrderingInfo>

</ExternalCategoryDefinition>

<Mapping>
<InternalCategory>FORTIFY_RULE_CATEGORY</InternalCategory>
<ExternalCategory>EXTERNAL_CATEGORY</ExternalCategory>

</Mapping>
<OrderingInfo>LIST_ORDER_NUMBER</OrderingInfo>

</ExternalList>
</ExternalMetadataPack>

Example Mappings
The following example shows some mappings for CERT SEI Coding Standards for Java:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<ExternalMetadataPack xmlns="xmlns://www.fortifysoftware.com/schema/externalMetadata"
schemaVersion="1.1">
<PackInfo>

<Name>CERT SEI Coding Standard Mappings</Name>
<PackID>cert-sei-mappings</PackID>
<Version>2015.1.00</Version>

</PackInfo>
<ExternalList>

<ExternalListID>27b303dc-71bf-4152-b921-105326f4597c</ExternalListID>
<Name>CERT Java</Name>
<Shortcut>CERTJAVA</Shortcut>
<Description>xxx</Description>
<Group>CERT</Group>

<ExternalCategoryDefinition>
<Name>IDS00-J. Prevent SQL injection</Name>
<Description>xyz</Description>
<OrderingInfo>1</OrderingInfo>

</ExternalCategoryDefinition>

<ExternalCategoryDefinition>
<Name>FIO16-J. Canonicalize path names before validating them</Name>
<Description>xyz</Description>
<OrderingInfo>2</OrderingInfo>

</ExternalCategoryDefinition>

Custom Rules Guide
Chapter 8: Custom Vulnerability Category Mapping

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 132 of 157

<ExternalCategoryDefinition>
<Name>IDS03-J. Do not log unsanitized user input</Name>
<Description>none</Description>
<OrderingInfo>3</OrderingInfo>

</ExternalCategoryDefinition>
<Mapping>

<InternalCategory>SQL Injection</InternalCategory>
<ExternalCategory>IDS00-J. Prevent SQL injection</ExternalCategory>

</Mapping>
<Mapping>

<InternalCategory>SQL Injection: Hibernate</InternalCategory>
<ExternalCategory>IDS00-J. Prevent SQL injection</ExternalCategory>

</Mapping>

<Mapping>
<InternalCategory>Log Forging</InternalCategory>
<ExternalCategory>IDS03-J. Do not log unsanitized user input</ExternalCategory>

</Mapping>
<Mapping>

<InternalCategory>Path Manipulation</InternalCategory>
<ExternalCategory>FIO16-J. Canonicalize path names before validating them</ExternalCategory>

</Mapping>
</ExternalList>

</ExternalMetadataPack>

Custom Rules Guide
Chapter 8: Custom Vulnerability Category Mapping

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 133 of 157

Appendix A: Taint Flag Reference
The tables in this appendix provide descriptions of the three types of taint flags included with the
Fortify Secure Coding Rulepacks.

This section contains the following topics:

General Taint Flags 134

Specific Taint Flags 136

Neutral Taint Flags 139

General Taint Flags
General taint flags, as a group, identify common sources of untrusted data. The following table
describes the general taint flags.

General Taint Flag ID Description

ARGS Indicates user input from command-line arguments.

CACHE Indicates cache source for memcached injection sinks.

CHANNEL Indicates source from java.nio.channels classes. Similar to
STREAM, but for channels instead of stream classes.

CONSOLE Indicates user input provided from the console.

CURSES Indicates input from a curses window.

DATABASE Indicates output from a database (treated as tainted input). Typically,
XSS is set at the same time as this taint flag.

DNS Indicates a Domain Name System.

ENVIRONMENT Indicates retrieval of environment variables. Environment security is
unknown and therefore this is seen as tainted input.

FILE_SYSTEM Indicates input from a file.

FORM Indicates input from a web form (for example, a standard HTML form).
Typically, XSS is set at the same time as this taint flag.

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 134 of 157

General Taint Flag ID Description

GUI_FORM Indicates input from a GUI form. Typically, XSS is set at the same time
as this taint flag.

ICC Indicates Android Inter-Component Communication. Typically, XSS is
set at the same time as this taint flag.

ICC_CLOUD Indicates Cloud Inter-Component Communication. Used for sinks on
Cross-Site Scripting: Inter-Component Communication (Cloud).
Typically, XSS is set at the same time as this taint flag.

JSON Indicates JSON documents. Typically, XSS is set at the same time as this
taint flag.

LDAP Indicates input from LDAP services. Typically, XSS is set at the same
time as this taint flag.

NAMING Indicates input from Naming services. Typically, XSS is set at the same
time as this taint flag.

NETWORK Indicates general input from a network. This taint flag is set when there
is no specific taint flag suitable due to lack of context. For example,
reading from a raw socket. Typically, XSS is set at the same time as this
taint flag.

PROPERTY Indicates input from system properties. This can come from a loaded
properties file, properties configured on a server, and so on.

REGISTRY Indicates Windows registry.

RPC Indicates input from a remote procedure call.

SERIALIZED Indicates serialized data.

STDIN Indicates a standard input stream.

STREAM Indicates input from a stream.

WEB Indicates general input from the web. This is a more specific
categorization than "NETWORK" above. You can also apply "XSS" on the
next page with this taint flag.

WEBSERVICE Indicates input from a web service. This is a more specific
categorization than "NETWORK" above. Typically, XSS is set at the

Custom Rules Guide
Appendix A: Taint Flag Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 135 of 157

General Taint Flag ID Description

same time as this taint flag.

XML Indicates an XML document. Typically, XSS is set at the same time as
this taint flag.

XSS Used in conjunction with another general taint flag for cross-site
scripting sinks.

When taint from a network, inter-component communication, or some

persistent service/document is used (for example, DATABASE, FORM,
GUI_FORM, ICC, ICC_CLOUD, JSON, LDAP, NAMING, NETWORK,
WEBSERVICE, WEB or XML), taints are added during a source along with
+XSS. The variant of general taint flags along with XSS determines the
type of cross-site scripting subcategory that is flagged.

For example: +XSS and +DATABASE can mean that a Cross-Site
Scripting: Persistent sink applies. +XSS and +WEB can mean that
a Cross-Site Scripting: Reflected sink applies.

Specific Taint Flags
Specific taint flags include a declaration that describes the category of taint flag in the Secure Coding
Rulepacks. The following table describes the specific taint flags.

Specific Taint Flag ID Description

AES_ALGORITHM Indicates a certain configuration object to have an underlying Advanced
Encryption Standard algorithm.

AUTH_CHALLENGE Indicates that an authentication challenge was sent to the client.

CLASS_NAME Indicates a class name for sinks such as Code Correctness:
Erroneous Class Compare.

CONTENTPROVIDERREAD Indicates the entity requires an Android Missing Content Provider Read
Permission. This is typically set on strings and fields associated with this
type of permission.

CONTENTPROVIDERWRITE Indicates the entity requires an Android Missing Content Provider Write
Permission. This is typically set on strings and fields associated with this
type of permission.

COOKIE_BROAD_DOMAIN Source for finding Cookie Security: Overly Broad Domain issues.

Custom Rules Guide
Appendix A: Taint Flag Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 136 of 157

Specific Taint Flag ID Description

COOKIE_BROAD_PATH Source for finding Cookie Security: Overly Broad Path issues.

COOKIE_NOT_SENT_OVER_SSL Source for finding Cookie Security: Cookie not Sent Over SSL
issues.

COOKIE_PERSISTENT Source for finding Cookie Security: Persistent Cookie issues

COOKIE_PLIST macOS/iOS cookie property list. Contains potentially private information
from cookies.

CRYPTO_KEY Indicates that the data is a cryptographic key. This is used together with
PRIVATE.

DJANGO_SAFE_STRING Set when a Django string is considered safe. Used to help with identifying
XSS sinks in Django.

DJANGO_AUTOESCAPE Set when Django auto-escaping is enabled. Used to help with identifying
XSS sinks in Django.

DJANGO_DISABLED_
AUTOESCAPE

Set when Django auto-escaping is disabled. Used to help with identifying
XSS sinks in Django.

DSA_ALGORITHM Indicates a certain configuration object to have an underlying Digital
Signature Algorithm.

FILESEPARATOR Set to identify Portability Flaw: File Separator issues.

FLOATSTRING Set when a float is converted to a string. Used to identify Code
Correctness: String Comparison of Float issues.

HTML_RISKY_ATTR Set to identify Insecure Sanitizer Policy issues.

HTML_RISKY_HREF Set to identify Insecure Sanitizer Policy issues.

HTML_RISKY_IMGFRAME Set to identify Insecure Sanitizer Policy issues.

INSECURE_PROTOCOL Insecure Protocol Identifier.

INTENTRECEIVINGACTION Indicates Android Intent Receiving Action.

INTENTSENDINGACTIVITY Indicates Android Intent Sending Activity.

INTENTSENDINGBROADCAST Indicates Android Intent Sending Broadcast.

INTENTSENDINGSERVICE Indicates Android Intent Sending Service.

INTPTR_TO_PRIVATE Set when taking a SecureString object and creating an IntPtr. This is then

later used to attempt to find Privacy Violation: Heap Inspection
issues.

Custom Rules Guide
Appendix A: Taint Flag Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 137 of 157

Specific Taint Flag ID Description

JAVASCRIPT Indicates dynamically generated JavaScript.

JPANE_HTML_ON Indicates that a JPane content type is set to HTML.

JSP_RESPONSE Used to identify a JSP Response.

KEYBOARD_CACHE Indicates Keyboard Cache.

LOCALSTORAGE Indicates that HTML5 local storage is in use.

LOW_ENTROPY Indicates that a source of low entropy was used. This might then lead to
problems within cryptographic algorithms if random numbers are
required.

MOBILE_DATA_ATTRIBUTE Indicates mobile data lacking data protection.

MOBILE_PARTIAL_
PROTECTED_DATA

Indicates that a mobile platform has non-optimal file protection.

MOBILE_UNPROTECTED_DATA Indicates that a mobile platform has no file protection.

NETWORKSTREAM Identifies a general network output stream.

NOVALIDATION Indicates that validation is disabled.

PASSWORD_IN_STR Indicates a password in a string.

POORVALIDATION Indicates a potentially incomplete validation against a cross-site scripting
vulnerability, such as HTML encoding, URL encoding, and so on.

PRIVATE Indicates private information.

PROCESSSTREAM Indicates that an output stream is associated with a process object. For

example, a java.lang.Process object in Java.

RSA_ALGORITHM Indicates a certain configuration object to have an underlying RSA
algorithm.

SESSIONSTORAGE Indicates that HTML session storage is being used.

SHELL_PROCESS Indicates that the process is run by a shell rather than directly.

SNAPSHOT_CACHE Indicates Application Snapshot Cache.

SOAP_MESSAGE Indicates a SOAP response message

SPRINGMODELMAP Indicates that a map is a Spring model map. This might lead to a trust
boundary violation.

SQLI_POORVALIDATION Indicates a potentially incomplete validation against a SQL Injection

Custom Rules Guide
Appendix A: Taint Flag Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 138 of 157

Specific Taint Flag ID Description

vulnerability, such as where escaping might not be enough protection
from an attack.

SSL_URL Indicates that an object creates an underlying URL connection, which
might lead to insecure SSL/TLS configurations.

SYSTEM_KEYSTORE Indicates that an object uses the default system keystore.

SYSTEMINFO Indicates system information.

TRIPLEDES_ALGORITHM Indicates a certain configuration object to have an underlying Triple DES
(3DES) algorithm.

WEBSOCKET_STREAM Identifies an output stream on a web socket.

WEBVIEW_JS_ENABLED Identifies when a WebView has JavaScript enabled (leading to the
possibility of certain types of attacks).

WEBVIEW_JS_DISABLED Identifies when a WebView has JavaScript disabled, which prevents certain
types of attacks.

WICKET_VALIDATION_OFF Indicates that Wicket Validation is off.

XMLPROCESSOR Identifies an XML processor. Used in conjunction with other taint to
identify problems such as XEE and XXE.

XSSSTREAM Indicates an output stream associated with an HTTP response.

Neutral Taint Flags
Neutral taint flags represent informational content. Neutral taint flags are most often used to note
that a specific vulnerability category was validated. Neutral taint flags are useful to filter out false
positives. The following table describes the neutral taint flags.

Neutral Taint Flag ID Description

ANGULAR_TRUSTED_
HTML

Indicates that dataflow is trusted HTML in an AngularJS application.

ANGULAR_TRUSTED_
RESOURCE_URL

Indicates that dataflow is a trusted resource URL in an AngularJS
application.

ANTISAMY_
VALIDATION

Indicates that AntiSamy validation was performed. Requires manual
auditing to identify whether this was sufficient.

Custom Rules Guide
Appendix A: Taint Flag Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 139 of 157

Neutral Taint Flag ID Description

APEX_VALIDATION_
OFF

Indicates that Visualforce validation has been turned off.

BASE64_ENCODED Indicates that the value has been Base64-encoded. Most vulnerabilities
are not reported if the dataflow is Base64-encoded. This taint flag is
removed when it is decoded again.

CONSTANTFILE Indicates that the file object is instantiated based on the hardcoded file
name.

CSS_ENCODE Indicates that the tainted data was encoded for CSS.

CSV_ENCODE Indicates data encoded for use in a CSV file.

DEOBFUSCATED Prevents Password Management issues from appearing.

DYNAMIC Indicates that dynamic Open SQL is used.

ENCRYPTED Indicates encrypted data. This flag is added when data is encrypted,
and then removed if the same data is then decrypted.

EXCEPTIONINFO Indicates exception information.

HEALTH Indicates that the information is health-related, such as with iOS
HealthKit.

HIDDEN_FIELD Indicates whether information comes from a hidden field. This affects

the severity of Access Control: Database issues.

HTML_ATTR_ENCODE Indicates HTML attribute encoding.

HTML_ENCODE Indicates HTML encoding.

JAVA_ENCODE Indicates Java encoding.

JS_ENCODE Indicates JavaScript encoding.

LATERAL Indicates a source of lateral SQL injection.

LDAP_DN_ENCODE Indicates that encoding used is suitable for a Distinguished Name (DN).

LDAP_ENCODED Indicates LDAP encoding.

LDAP_FILTER_ENCODE Indicates that encoding used is suitable for a LDAP filter query

Custom Rules Guide
Appendix A: Taint Flag Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 140 of 157

Neutral Taint Flag ID Description

argument.

LOCATION Indicates that the information is location-related, such as GPS
coordinates.

NO_NEW_LINE Indicates no newline.

NOT_NULL_TERM_
TRUNCATE

Indicates that data is not null-terminated because of being truncated.

NOT_NULL_
TERMINATED

Indicates that data is missing a null terminator.

NULL_TERMINATED Indicates a null-terminated string.

NUMBER Indicates a numeric value.

OTHER_ENCODE Indicates that data is encoded with an encoding that does not have a
specific taint. This flag is also used for partial encodings that are very
specific to an API.

PRIMARY_KEY Indicates a primary key within a database. Affects the severity of

Access Control: Database issues.

PROCESSOUTPUT Indicates output from a process that is user-controlled.

RCONCATENATED Indicates a right-concatenated string.

SALT Indicates a salt. Used in cryptographic issues related to salts and
salting.

SCRIPT_ENCODE Indicates script (such as JavaScript or VBScript) encoding.

STRING_LENGTH Indicates string length.

TAINTED_EXPECTED_
TYPE

Indicates that a user can control the expected types to be deserialized.

UNICODE_ENCODE Indicates Unicode encoding.

URL_ENCODE Indicates URL encoded data.

Custom Rules Guide
Appendix A: Taint Flag Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 141 of 157

Neutral Taint Flag ID Description

VALIDATED_
<category>_
<subcategory>

For each sink, there is a specific taint to check whether the dataflow
validates against it. These taint flag identifiers use a naming convention

of VALIDATED_<category>_<subcategory>. Any parentheses,
hyphens, and spaces in the category and subcategory names are
converted to underscores.

For example, the VALIDATED flag against Cross-Site Scripting:
Reflected is VALIDATED_CROSS_SITE_SCRIPTING_REFLECTED. The
VALIDATED flag against Log Forging (debug) is VALIDATED_LOG_
FORGING__DEBUG_ (note the two underscores before DEBUG).

WEAKCRYPTO Indicates data that was previously Base64 encoded. Used to identify

when passwords used were just Base64 encoded (Password
Management: Weak Cryptography).

XML_ATTR_ENCODE Indicates encoded for use as an XML attribute.

XML_ENCODE Indicates encoded for use in XML.

XPATH_ENCODE Indicates encoded for use within an XPath expression.

Custom Rules Guide
Appendix A: Taint Flag Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 142 of 157

Appendix B: Structural Rules Language
Reference
This section contains the following topics:

Structural Syntax and Grammar 143

Types 144

Reference Resolution 146

Null Resolutions 146

Relations 147

Results Reporting 148

Call Graph Reachability 149

Structural Syntax and Grammar
The following is a simplified BNF-style grammar for the structural tree query language. Note that for
readability purposes it is sometimes more and sometimes less strict than the actual grammar.

The following shows the structural tree query language:

<Rule> := <Label> <Expression>

<Label> := <TypeName> [<Identifier>] ':'

<Expression> := <Literal> | <Reference> | <RelationExpression> | 'not'
<Expression> | <Expression> 'and' <Expression> | <Expression> 'or'
<Expression> | '(' <Expression> ')'

<Reference> := [<Reference> '.'] <Identifier>

<RelationExpression> := [<Reference> | <Literal>] <Relation> (
<Reference> | <Literal> | <SubRule>)

<Relation> := 'is' | 'in' | 'contains' | 'reachedBy' | 'reaches' | '===' |
'==' | '!=' | '<=' | '>=' | '<' | '>' | 'startsWith' | 'endsWith' |
'matches'

<SubRule> := '[' [<Label>] <Expression> ']' ['*']

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 143 of 157

<Literal> := 'true' | 'false' | <StringLiteral> | <NumberLiteral> |
<TypeSignatureLiteral>

<StringLiteral> := '"' <Text> '"'

<NumberLiteral> := ('0'-'9')+

<TypeSignatureLiteral> := 'T' '"' <Text> '"

Types
The rules language is strongly typed. Types in the rules language are called structural types to
distinguish them from the language types of the source language. The types are organized into a
hierarchy with source code constructs organized under the Construct base. Every type inherits the
properties of each of its ancestors.

Each property has a fixed resolution type. As a result, the structural type of every subexpression in
the rules language is known during rules specification. Static type-checking is performed when a rule
is loaded.

For a full reference for the structural type hierarchy, see the Fortify Structural Type and Properties
Reference. This information is included in the ZIP file from which you extracted this document.

The structural language also supports lists of objects. These objects do not have official type names.
This means that they cannot appear as the subject of a rule. However, properties can still resolve to
lists. The analyzer can access lists using the contains and in relations, just like constructs. For
example, the Function construct has a property paramaterTypes that returns a list of Type objects.

The following rule matches functions that have any parameter of type int:

Function f: f.parameterTypes contains [Type t: t.name = "int"]

Interpret this rule as the following query: Select any function f from the structure of the program
where the parameters of type f contain any type of int.

You can also reference with zero-based index notation, using standard, bracketed accessors.

The following rule matches functions where the first parameter has type int:

Function: parameterTypes[0] == T"int"

The T"…" syntax denotes a special type of constant in the structural language. It provides a
convenient way to inspect language types. When the structural evaluator encounters such a constant,
it converts the string between the quotes to a structural TypeSignature object (which is comparable
with Type) using the rules of the source code language being examined (Java, C, and so on).

Custom Rules Guide
Appendix B: Structural Rules Language Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 144 of 157

To match a nested type, use the dot notation (OuterType.NestedType). Below is a Java code
example:

package com.example;

class Outer {
class Nested {

public void foo() {
...

}
}

}

The following rule matches a function declared inside the Nested class for the previous Java code
example:

Function f: f.enclosingClass.name == "com.example.Outer.Nested"

The following example shows an equivalent rule:

Function f: f.enclosingClass == T"com.example.Outer.Nested"

Properties

The Fortify Structural Type and Properties Reference provides a list of all properties recognized by
the structural analyzer. All structural types, including lists and primitive structural types, have
associated properties. Every type inherits the properties of each of its ancestors. List types have only
one property, length, which represents the number of items in the list.

Properties often resolve to subtypes of their declared types. The following is a Java code example:

x = 30;

This translates to an AssignmentStatement in the structural tree.

In the structural rules language, you can examine an assignment's right-hand side using the property
AssignmentStatement.rhs, which nominally resolves to an Expression. In this case, it resolves to
an IntegerLiteral, a subtype of Literal, which is itself a subtype of Expression.

The following example rule matches every assignment where the right-hand side has the expression
of type int:

AssignmentStatement a: a.rhs.type == T"int"

You can use this rule because type is a property of all Expression objects. However, if you want to
match every assignment, where the right-hand side is the integer literal 30, you must cast
AssignmentStatement.rhs using a subrule.

Custom Rules Guide
Appendix B: Structural Rules Language Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 145 of 157

The following example subrule casts an AssignmentStatement.rhs:

AssignmentStatement a: a.rhs is [IntegerLiteral n: n.value == 30]

This is because value is not a property of Expression. To maintain type-safety, you must assert that
rhs actually is an IntegerLiteral before you can access the property value.

Reference Resolution
A Reference (see "Structural Syntax and Grammar" on page 143) is an Identifier or chain of identifiers
connected by dots, which resolves to a labeled object or a property of an object. Resolution of the first
identifier follows the rules described here. Subsequent identifiers in the reference are always
properties of the inner object.

To resolve the first identifier ident in a reference, the structural evaluator first checks to see if ident
appears in a Label in the enclosing subrule, in a parent subrule, or in the initial label that starts the
rule.

The following rule shows that f and v are resolved by examining the labels for the enclosing context:

Function f:
f contains

[Variable v: v.name == f.name]

In the case that ident does not resolve to a labeled object, ident is resolved as a property of the object
selected by the immediately enclosing subrule (or the rule itself if ident does not appear in a subrule).

In the following example, name resolves in both cases to the name of the function:

Example 1: Function: name == "func"
Example 2: Variable v: v in [Function: name == "func"]

Null Resolutions

Some properties are valid only for certain instances of a structural type. For example, TryBlock has a
property, finallyBlock, that resolves to the associated finally block of a try block. However, not all
try blocks have associated finally blocks.

In these cases, properties resolve to null. There is no need for rules to check for this, because the
Structural Analyzer handles operations on null in a well-defined manner:

l Every property of null resolves to null
l Every subrule relation on a null object resolves to false

Custom Rules Guide
Appendix B: Structural Rules Language Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 146 of 157

The following shows how Boolean connectives resolve:

null and null -> null
null or null -> null
null and true -> null
null or true -> true
null and false -> false
null or false -> null

If the boolean value is determinate, it is resolved; otherwise it is null.

Relations

You can use the equality and inequality relations, == and != , to compare any two objects recognized
by the Structural Analyzer. For equality to hold, the structural types of the objects must agree.
Equality has the obvious meaning for primitive structural types; for constructs, the condition is that
the two objects must be structurally identical.

The Structural Analyzer confirms the structural identity in one of two ways:

l Declarations are confirmed by comparing the canonical names of the symbols.
l Other constructs are confirmed by comparing the underlying nodes in the program representation

Lists are equal if they enumerate equal elements in the same order.

The strict equality relation, === is true only if the objects being compared are the same object.

The order relations, < , > , <= , and >= have their usual meanings for strings, numbers, and booleans.
You cannot compare types, lists, and constructs with order relations.

There are several special relations:

l ismeans the same thing as == except that you can use it to preface a subrule.
l You can use in and contains with strings and lists. For other constructs, these relations examine

parent and child relationships. The in relation searches the parent and grandparents of the node
to the top of the tree. The contains relation searches the children and normally the grandchildren
of the node to the bottom of the tree. The exception to this behavior is for the Class and
CompilationUnit structural types, for which contains only examines the first generation of
children (this prevents writing queries that are unreasonably expensive to execute).

l You can only use startsWith, endsWith, and matches to relate two strings. The matches
relation interprets the right-hand side of the relation as a Java regular expression, and it is true
only if the left-hand side is matched by that regular expression.

l You can only use reaches and reachedBy to relate two Functions or two Classes. See "Call
Graph Reachability" on page 149 for more information.

You can omit the left-hand side of any of these relations. If you omit it, the left-hand side defaults to
the construct that the rule is currently matching.

Custom Rules Guide
Appendix B: Structural Rules Language Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 147 of 157

The following example rule matches any class that has a proper superclass:

Class c:
c.supers contains

[Class c2: c2 != c]

Because supers resolves to a Class[], you can abbreviate the previous rule to the following:

Class c: supers contains [!= c]

Although this rule is more compact, the first example is clearer and easier to read.

Results Reporting
Recall the following example, which matches return statements that appear inside a finally block:

ReturnStatement r: r in [FinallyBlock:]

The following rule is similar:

FinallyBlock f: f contains [ReturnStatement:]

However, there are two significant differences. First, if a single finally block contains multiple return
statements, the first rule generates multiple vulnerabilities while the second rule produces just one.

The second difference is the way in which the rules report vulnerabilities. The primary source location,
as reported in the analysis output, always points to the rule's outermost construct. The first rule
highlights the return statement. The second rule highlights the block.

By default, the Structural Analyzer reports no information other than the source location of the
outermost construct that it matches. For some rules, this is sufficient. Other rules require more
information to create a complete report.

You can enable reporting for a subrule by appending an asterisk to the subrule:

ReturnStatement: in [FinallyBlock:]*

This rule is logically equivalent to the un-asterisked rule because it matches exactly the same code
constructs. However, when the Structural Analyzer matches it, both the return statement and its
enclosing finally block are reported. The return statement is still the primary reporting location.

The Structural Analyzer only reports asterisked subrule matches for subrules that contribute to a
match. The following subrule shows this.

Function: contains [AssignmentStatement:]* and public or
contains [ReturnStatement:]* and private

Custom Rules Guide
Appendix B: Structural Rules Language Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 148 of 157

This rule matches any public method containing an assignment statement, or any private method
containing a return statement. The Structural Analyzer always reports the matching statement,
because both subrules are asterisked. However, if a method contains both an assignment statement
and a return statement, the analyzer reports as follows:

l Assignment statement—If the method is public
l Return statement—If the return statement of the method is private

Call Graph Reachability
Many structural rules apply only in certain contexts. For example, Enterprise JavaBeans (EJBs) should
never call the java.io libraries. You can implement a rule that matches every call to java.io.

The following rule matches every call to java.io:

FunctionCall call:
call.function.enclosingClass.name startsWith "java.io."

The issue with this rule is that it generates many false positives. This is because most calls to
java.io do not involve EJBs. A better recommendation is to restrict the rule to function calls that
appear within an EnterpriseBean. The enclosing class of the function call differs from the enclosing
class of the function.

The following rule has an EnterpriseBean restriction:

FunctionCall call:
call.enclosingClass.supers contains

[Class c: c.name == "javax.ejb.EnterpriseBean"]
and
// The enclosing class of the function itself
call.function.enclosingClass.name startsWith "java.io."

This improved rule misses cases in which an EJB indirectly calls java.io. For example, this rule
misses when an EJB calls a utility method in a different class, and the utility method opens a file. This
should be a violation. The Structural Analyzer provides two relations: reaches and reachedBy that
traverse the call graph of a program. You can use these relations to handle this type of situation.

The following example shows a reaches relation:

f reaches [subrule]

This is true just if there is some path through the call graph originating with f and terminating at a
function that matches the subrule. reachedBy is similar, with the path proceeding in the opposite
direction.

Custom Rules Guide
Appendix B: Structural Rules Language Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 149 of 157

The following example shows a FunctionCall that is the best way to encode the previous EJB rule:

FunctionCall call:
call.enclosingClass.supers contains
[Class: name == "javax.ejb.EnterpriseBean"]
and
call.function reaches

[Function fnReached:
fnReached.enclosingClass.name startsWith "java.io."]*

You can also use the reaches and reachedBy relations on classes. Class A reaches class B if some
function of A reaches some function of B. For example, the following rule matches public fields in
classes that an Applet can reach:

Field f:
f.public and not f.final
and f.enclosingClass reachedBy

[Class a: a.supers contains
[Class super: super.name == "java.applet.Applet"]]

A field cannot appear as part of a reachedBy relation. Only functions and classes can satisfy the
reaches or reachedBy relation. For performance reasons, variable scopes do not extend across
reaches or reachedBy predicates.

The following is an illegal rule:

Function f: reaches [Function g: g != f]

The variable f cannot appear in the subrule of a reaches relation.

Custom Rules Guide
Appendix B: Structural Rules Language Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 150 of 157

Appendix C: Control Flow Rule Reference
This section contains the following topics:

Syntax and Grammar 151

Control Flow Rules 152

Syntax and Grammar
The following is a simplified BNF-style grammar for the Control Flow Rule Language. For readability,
the grammar in this guide is stricter than it is in practice.

The following shows the Control Flow Rule Language:

<MachineSpecification> := <Declaration>* <Transition>*
<Declaration> := <StateDeclaration> | <PatternDeclaration> |
<VariableDeclaration>
<StateDeclaration> := 'state' <StateName> ['(start)' | '(error)'] ';'
<StateName> := <Identifier>
<PatternDeclaration> := 'pattern' <Identifier> '{' <StatementList> '}'
<VariableDeclaration> := 'var' <Identifier> ';'
<Transition> := <StateName> '->' <StateName> '{' <StatementList> '}'
<StatementList> := <Statement> ['|' <StatementList>]
<Statement> := <PatternUse> | <MetaFunction> | <Declaration> |
<AssignmentStatement> | <Expression>
<PatternUse> := 'pattern' <Identifier>
<MetaFunction> := '#end_scope' '(' <RuleVariable> ')'

| '#end_function' '(' ')'
| '#return' '(' [<Expression>] ')'
| '#compare' '(' <RuleVariable> ',' (<Literal> | <Wildcard>) ')'
| '#param' '(' <RuleVariable> ',' (<Wildcard> | <NumberLiteral>) ')'
| '#ifblock' '(' <RuleVariable><IfBlockComparisonOperator> (<Literal>

| <Wildcard>) ',' ('true' | 'false') ')'
<IfBlockComparisonOperator> := '==' | '!=' | '<' | '<=' | '>' | '>='
<Declaration> := ('#any_declaration' | '#simple_declaration' | '#complex_
declaration' | '#buffer_declaration') '(' <RuleVariable> ')'
<AssignmentStatement> := (<RuleVariable> | <Wildcard> | <OpExp>) '='
<Expression>
<Expression> := (<Literal> | <OpExp> | <Call> | <QualifiedCall> |
<Wildcard> | <RuleVariable>)
<Literal> := <StringLiteral> | <NumberLiteral> | 'true' | 'false' | 'null'

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 151 of 157

<StringLiteral> := '"' <Text> '"'
<NumberLiteral> := ('0'-'9')+
<OpExp> := '&' <Expression> | '*' <Expression>
<RuleVariable> := <Identifier>
<Wildcard> := '?'
<QualifiedCall> := (<RuleVariable> | <Wildcard>) '.' <Call>
<Call> := (<Identifier> | '#any_function') '(' [<ArgumentList>] ')'
<ArgumentList> := (<Argument> [',' <ArgumentList>]) | '...'
<Argument> := ['...' ','] <Expression>

Control Flow Rules
Control flow rules provide definitions of state machines that characterize unsafe behavior such as
potentially dangerous sequences of operations.

Control Flow Rule Identifiers

Control flow rules can have multiple function identifiers. The function identifiers are used in the
control flow definition. The definition uses the value of the reference identifier as a variable to access
the function identifiers. See "XML Representation of Control Flow Analyzer Rules" on page 94 for
descriptions of most of the control flow function identifiers. The function identifier for control flow
rules also contains additional fields and functionality, described in this section.

Control Flow Rule Format

Unlike dataflow rules, a control flow rule does not specify a single function; instead, it specifies a
sequence of program elements (function calls or other entities in a program). This definition, which
goes in the <Definition> element of the rule, resembles a simple programming language.

Control flow rules support the following C++ and Java-style comments:

l // creates a comment to the end of the line
l /* creates a comment until a matching */

Each rule definition defines a state machine. Each state machine has exactly one start state, one or
more error states, and any number of intermediate states. The machine always has a current state.

When the current state is an error state, the Control Flow Analyzer reports a vulnerability.

States are connected by transitions. Each transition has a source state, a destination state, and some
number of patterns. If a transition's source state is the current state and one of that transition's
patterns matches a fragment of the program, then the transition's destination state becomes the new
current state. In this case, the machine is said to have transitioned from the source state to the
destination state. The program fragment is referred to as the "input" to the pattern. The definition of a
machine consists of two major parts: declarations and transitions.

Custom Rules Guide
Appendix C: Control Flow Rule Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 152 of 157

This section contains the following topics:

Declarations 153

Transitions 153

Function Calls 156

Declarations

Machine definitions begin with declarations of the states of the machine. States are defined with the
state keyword, followed by the state name, and optionally followed by start or error to designate
the start and error states, respectively. A simple machine can have the following state definitions:

state state1 (start);
state state2;
state state3 (error);

Machines can also include variables, which are declared with the var keyword. A variable can match
any expression in the program. At the first use of a variable, it is bound to the expression it matches.
For subsequent uses of the same variable, the variable only matches if the input is the same as the
expression to which the variable is bound.

The following shows a sample declaration:

var f;

Finally, you can give names to patterns to avoid entering the same pattern multiple times. Specify a
name for the pattern with the pattern keyword, followed by the pattern enclosed in braces.

For example, the following line declares a pattern named alloc, that matches the malloc and
calloc functions:

pattern alloc { malloc(...) | calloc(...) }

For more information on patterns, see "Transitions" below.

If a control flow rule contains a line of the form limit <refid>;, then that control flow rule only
applies in the body of functions that match the function identifier with reference ID <refid>.

Transitions

Transitions define how the current state of the machine might change. As described in "Declarations"
above, each transition has a source state, a destination state, and a pattern. You can have multiple
transitions with the same source state; in this case, the new current state is the destination state of
the first transition with a pattern that matches the input.

Transitions are defined by the name of the source state, the symbol ->, the name of the destination
state, and one or more patterns enclosed in braces. Separate multiple patterns in the same transition
with the | character.

Custom Rules Guide
Appendix C: Control Flow Rule Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 153 of 157

The following is an example of a transition with multiple patterns separated by the | character:

source -> destination { pattern1 | pattern2 }

A pattern consists of one of the following elements:

l Uses of a named pattern

You can use patterns declared with the pattern keyword in the declaration section in transitions
by specifying the pattern keyword followed by the pattern name, such as: state1 -> state2 {
pattern alloc }.

l Assignment statements

Control flow rules often refer to the return values of function calls, particularly object constructors
and other functions that return handles to resources. You can match the return value of a function
or any assignment statement with the name of a rule variable followed by the equal (=) symbol
and an expression (see "Expressions" below) The left-hand side of the assignment operator must
be a previously declared rule variable.

l Expressions

An expression can be any one of the following:
l A string, enclosed in double-quotes (C-style)

l A character, in single-quotes (C-style)

l An integer

l A floating-point number

l A boolean "true" and "false" (without quotes)

l The value "null" (without quotes)

l *<Expression>: A dereference of <Expression>

l &<Expression>: A reference to <Expression> (C-style)

l A function call (see "Function Calls" on page 156)

l A ? character: Matches any expression in the input

l The name of a rule variable: If the rule variable is unbound, matches any expression and binds
the rule variable to that expression. If the rule variable is bound, matches the expression to
which the variable was first bound.

l Language feature statements

Some aspects of programs cannot be represented using the expressions. For these aspects, there
are special types of patterns. These patterns resemble function calls in C or Java, but all the

Custom Rules Guide
Appendix C: Control Flow Rule Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 154 of 157

function names begin with a # character.
The following table describes the valid language feature statements.

Statement Description

#end_scope(var) Matches the end of the enclosing scope for the expression bound

to the rule variable var.

#return(expr) Matches a return statement with a return expression matching

expr.

#return() Matches any return statement.

#compare(var, const) Matches a comparison (==, !=, <, >, <=, >=) between var
(a rule variable) and const (a string, character, integer, floating-
point number, boolean, null, or '?' expression).

#simple_declaration
(var)

Matches the declaration of a simple type—An integer, pointer,

reference, or other primitive data type. Binds the rule variable var
to the variable declared in the program.

#declaration(var) Is identical to #simple_declaration(var).

#complex_declaration
(var)

Matches the declaration of a complex data type (struct or object)
in C or C++. Pointers to structs, pointers and references to C++
objects, and references to Java objects are not matched; use the

#simple_declaration pattern for these data types.

#buffer_declaration
(var)

Matches the declaration of a stack buffer in C or C++.

#any_declaration
(var)

Matches any of the preceeding.

#ifblock
(var, const, which)

Matches a comparison between var and const as defined for
#compare, with the additional restrictions that the comparison
operator must be an equality test (==, !=, or a similar operator),
and that the comparison must occur within the predicate of a
branching or looping construct (such as if statements, for loops,
and while loops). The specified state transition only occurs on the

branch where var == const evaluates to which.

Custom Rules Guide
Appendix C: Control Flow Rule Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 155 of 157

Function Calls

Most interesting security properties involve the use of function matching syntax based on function
identifiers. Control flow rules use the reference ID field from function identifiers to specify functions
for transitions. For example, if there is a function identifier with a reference ID of allocator, then the
control flow pattern v = $allocator(?) would assign the rule variable v to the return value of any
function that matched the $allocator function identifier and took exactly one argument.

In general, the arguments to the rule function should exactly match the expected arguments to the
input function. Therefore, to write a rule that binds the second argument to the link system call to the
rule variable var, the rule would read $link(?, var), assuming a function identifier matching the
link system call had already been defined with a reference ID of link. There is one exception to the
"one expression per argument" rule: an ellipsis (...) in the arguments to a function matches zero or
more expressions. It is therefore possible to match the last argument of a function by specifying
function(..., var), function(...), and $function(...,var,...)matches any invocation of
the specified function, without paying attention to the arguments to that function.

Custom Rules Guide
Appendix C: Control Flow Rule Reference

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 156 of 157

Send Documentation Feedback
If you have comments about this document, you can contact the documentation team by email.

Note: If you are experiencing a technical issue with our product, do not email the documentation
team. Instead, contact Micro Focus Fortify Customer Support at
https://www.microfocus.com/support so they can assist you.

If an email client is configured on this computer, click the link above to contact the documentation
team and an email window opens with the following information in the subject line:

Feedback on Custom Rules Guide (Fortify Static Code Analyzer 23.1.0)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web mail client, and
send your feedback to fortifydocteam@microfocus.com.

We appreciate your feedback!

Micro Focus Fortify Static Code Analyzer (23.1.0) Page 157 of 157

mailto:fortifydocteam@microfocus.com?subject=Feedback on Fortify Static Code Analyzer Custom Rules Guide (23.1.0)
https://www.microfocus.com/support

	Title Page
	Contents
	Preface
	Contacting Micro Focus Fortify Customer Support
	For More Information
	About the Documentation Set
	Fortify Product Feature Videos

	Change Log
	Chapter 1: Introduction
	Intended Audience
	Document Structure
	Additional Custom Rules Documentation and Sample Application
	Related Documents
	All Products
	Fortify Static Code Analyzer

	Chapter 2: Custom Rules Overview
	Fortify Secure Coding Rulepacks
	Custom Rules
	Custom Rules and User Roles
	Individual Auditor
	Central Security Team
	Development Team

	Rulepacks and Common Rule XML Elements
	RulePack Element
	Rules Element
	Common Rule Elements
	FunctionIdentifier Element
	Parameters Element
	Modifiers Element
	Conditional Elements

	Custom Descriptions
	Adding Custom Descriptions to Fortify Rules
	Identify Rules to Modify

	Adding Fortify Descriptions to Custom Rules

	Chapter 3: Structural Analyzer Rules
	Structural Analyzer and Custom Rules
	Structural Tree
	Structural Tree Query Language
	Structural Tree Examples

	XML Representation of Structural Analyzer Rules
	Custom Structural Rule Scenarios
	Leftover Debug
	Dangerous Function Calls
	Overly Broad Catch Blocks
	Password in Comments
	Poor Logging Practice
	Empty Catch Block

	Chapter 4: Dataflow Analyzer Rules
	Dataflow Analyzer and Custom Rules
	Dataflow Analyzer and Custom Rules Concepts
	Taint Source
	Taint Write
	Taint Entrypoint
	Taint Sink
	Taint Passthrough / Transfer
	Taint Cleanse
	Taint Flags
	Taint Flag Types
	Taint Flag Behavior

	Taint Path
	Validation Constructs
	Types of Dataflow Analyzer Rules

	XML Representation of Dataflow Analyzer Rules
	Source Rules
	Sink Rules
	Passthrough Rules
	Entrypoint Rules
	Cleanse Rules

	Custom Dataflow Analyzer Rule Scenarios
	SQL Injection and Access Control
	Persistent Cross-Site Scripting
	Path Manipulation
	Command Injection
	Validation Construct Examples

	Chapter 5: Control Flow Analyzer Rules
	Control Flow Analyzer and Custom Rules
	Control Flow Analyzer and Custom Rule Concepts
	Rule Pattern
	Rule Variable
	Rule Binding

	XML Representation of Control Flow Analyzer Rules
	Custom Control Flow Rule Scenarios
	Resource Leak
	Null Pointer Check

	Chapter 6: Content and Configuration Analyzer Rules
	Content Analyzer and Custom Rules
	XML Representation of Content Analyzer Rules
	Configuration Analyzer and Custom Rules
	XML Representation of Configuration Analyzer Rules
	Configuration Rules
	Regular Expression Rules

	Custom Configuration Rule Scenarios
	Property File
	Tomcat File
	Authentication Tokens in Files

	Chapter 7: Manipulation Rules
	Suppression Rules
	XML Representation of Suppression Rules
	Alias Rules
	XML Representation of Alias Rules
	Result Filter Rules
	XML Representation of Result Filter Rules

	Chapter 8: Custom Vulnerability Category Mapping
	Mapping Fortify Categories to Alternative External Categories
	External Metadata XML Structure
	ExternalMetadataPack Element
	PackInfo Element
	ExternalList Element
	ExternalListExtension Element
	ExternalCategoryDefinition Element
	Mapping Element
	XML Skeleton

	Example Mappings

	Appendix A: Taint Flag Reference
	General Taint Flags
	Specific Taint Flags
	Neutral Taint Flags

	Appendix B: Structural Rules Language Reference
	Structural Syntax and Grammar
	Types
	Properties

	Reference Resolution
	Null Resolutions
	Relations
	Results Reporting
	Call Graph Reachability

	Appendix C: Control Flow Rule Reference
	Syntax and Grammar
	Control Flow Rules
	Control Flow Rule Identifiers
	Control Flow Rule Format
	Declarations
	Transitions
	Function Calls

	Send Documentation Feedback

